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Preface

The international Gesture Workshops have become the leading interdisciplinary
events for dissemination of the latest results on gesture-based communication.
The goal of these workshops is to bring together researchers who want to meet
and share ideas on advanced research on gesture related to multidisciplinary
scientific fields. Depending on the fields, the objectives can be very different.
While physiology and biomechanics aim to extract fundamental knowledge of
physical gesture, computer sciences try to capture different aspects of gesture
and extract features that help to identify, interpret or rebuild the underlying
mechanisms of communication gestures. Other approaches and methodologies
are followed by cognitive sciences and linguistics, bringing a complementary un-
derstanding of motor control and gesture meaning. The results can be enhanced
by technological applications or demonstrations. For example, gestural interac-
tion in an augmented or virtual reality context leads to active application areas.
Since 1996 gesture workshops have been held approximately every two years,
with full post-proceedings usually published by Springer.

Gesture Workshop 2005 (GW 2005) was organized by VALORIA, at the
University of Bretagne Sud (Vannes, France), and was held on Berder Island,
Morbihan (France) during May 18-20, 2005. This event, the sixth in a highly
successful workshop series, was attended by more than 70 participants from
all over the world (13 countries). Like the previous events, GW 2005 aimed to
encourage multidisciplinary exchanges by providing an opportunity for partici-
pants to share new results, show live demonstrations of their work, and discuss
emerging directions on topics broadly covering the different aspects of gesture.
The very special area where the workshop took place (a small island in the Gulf
of Morbihan) provided an occasion for lively discussions and establishment of
future collaboration on research centered on gesture as a means of communica-
tion. A large number of high-quality submissions was received, which made GW
2005 a great event for both industrial and research communities interested in
gesture-based models relevant to human–computer interaction and simulation.

This book is a selection of revised papers presented at Gesture Workshop
2005. Containing 24 long papers and 14 short papers, it offers a wide overview
of the most recent results and work in progress related to gesture-based com-
munication. Two contributions on major topics of interest are included from
two invited speakers. The contribution from Jean-Louis Vercher (Movement and
Perception Lab., Marseille, France) is concerned with fundamental issues of bi-
ological motion, and their link with the perception and the synthesis of realistic
motion. The contribution from Ronan Boulic et al. (EPFL, Switzerland) high-
lights the potential of some well-known computer animation methods for motion
synthesis. The book covers eight sections of reviewed papers relative to the fol-
lowing themes:
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– Human perception and production of gesture
– Sign language representation
– Sign language recognition
– Vision-based gesture recognition
– Gesture analysis
– Gesture synthesis
– Gesture and music
– Gesture interaction in multimodal systems

Under the focus of gesture in Human-Computer Interaction and Simulation,
the book encompasses all aspects of gesture studies in emerging research fields.
Two sections are devoted to sign language representation and recognition. Perti-
nent features extracted from captured gestures (signal, image) are used for pro-
cessing, segmentation, recognition or synthesis of gestures. These topics concern
at least three sections of the book. Different kinds of applications are consid-
ered, including for example expressive conversational agents, gesture interaction
in multimodal systems, and gesture for music and performing arts.

The workshop was supported by the University of Bretagne Sud (France), the
French Ministry of Research, the Conseil Régional de Bretagne and the Conseil
Général du Morbihan: we are very grateful for their generous financial support.
GW 2005 also received some financial support from COST-European Science
Foundation. In particular, the Cost287-ConGAS action, mainly concerned with
Gesture Controlled Audio Systems, was strongly represented within the work-
shop, and we are grateful to the delegates for their contribution to the event
and the book. Thanks also to France Telecom R&D (a French telecommunica-
tion society) which generously contributed to the sponsoring of GW 2005, and
participated in the forum by presenting very relevant demonstrations.

We would also like to express our thanks to the local Organizing Commit-
tee (Sylviane Boisadan, Alexis Héloir, Gildas Ménier, Elisabeth Le Saux, Joël
Révault, Pierre-François Marteau) as well as Gersan Moguérou for webmastering
the GW2005 Internet site. We are also grateful to the university staff and the
PhD students from VALORIA who helped in the organization of the workshop.

Finally, the editors are thankful to the authors of the papers, as well as the
international reviewers. As a result of their work, this volume will serve as an
up-to-date reference for researchers in all the related disciplines.

December 2005 Sylvie Gibet
Nicolas Courty

Jean-François Kamp
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Ronan Boulic, Manuel Peinado, Benôıt Le Callennec . . . . . . . . . . . . . . 176

Long Papers

Implementing Expressive Gesture Synthesis for Embodied
Conversational Agents

Björn Hartmann, Maurizio Mancini, Catherine Pelachaud . . . . . . . . . 188



XII Table of Contents

Dynamic Control of Captured Motions to Verify New Constraints
Carole Durocher, Franck Multon, Richard Kulpa . . . . . . . . . . . . . . . . . . 200

Upper-Limb Posture Definition During Grasping with Task and
Environment Constraints

Nasser Rezzoug, Philippe Gorce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Adaptive Sampling of Motion Trajectories for Discrete Task-Based
Analysis and Synthesis of Gesture

Pierre-François Marteau, Sylvie Gibet . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Simulation of Hemiplegic Subjects’ Locomotion
Nicolas Fusco, Guillaume Nicolas, Franck Multon,
Armel Crétual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Short Papers

Handiposte: Ergonomic Evaluation of the Adaptation of Physically
Disabled People’s Workplaces

Frédéric Julliard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

Modeling Gaze Behavior for a 3D ECA in a Dialogue Situation
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Thomas Hermann, Oliver Höner, Helge Ritter . . . . . . . . . . . . . . . . . . . . 312

Constrained Gesture Interaction in 3D Geometric Constructions
Arnaud Fabre, Ludovic Sternberger, Pascal Schreck,
Dominique Bechmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

Short Papers

Gestural Interactions for Multi-parameter Audio Control and
Audification

Thomas Hermann, Stella Paschalidou, Dirk Beckmann,
Helge Ritter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

Rapid Evaluation of the Handwriting Performance for Gesture Based
Text Input

Grigori Evreinov, Roope Raisamo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343



S. Gibet, N. Courty, and J.-F. Kamp (Eds.): GW 2005, LNAI 3881, pp. 1 – 12, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Perception and Synthesis of Biologically Plausible 
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Abstract. To model and simulate human gesture is a challenge which takes 
benefit from a close collaboration between scientists from several fields: psy-
chology, physiology, biomechanics, cognitive and computer sciences, etc. As 
an a priori requirement, we need to better understand the so-called laws of bio-
logical motions, established all along the 20th century. When modelled and used 
to animate artificial creature, these laws makes these creatures (either virtual or 
robotic) move in a much more realistic, life-like, fashion. 

1   Introduction 

A virtual reality (VR) system is expected to provide realistic representations of ob-
jects. The realistic character applies at least as much to the behaviour of the objects as 
to their aspect [1]. A moving object must particularly comply with certain rules: at 
first, the laws of physics of course, and in particular those of the Galilean kinematics 
and Newtonian dynamics. The compliance with these rules confers realistic properties 
to the environment (i.e. gravity) as to the objects (inertia, surface properties, constitu-
tion, etc). In the particular case where the animated object corresponds to a living 
being (animal, human) or supposed such, additional rules are essential, to obtain that 
the simulated item is perceived as being alive. Indeed, many studies in the field of 
psychology of perception revealed the existence of biological "signatures" in the 
movement of the living beings. The existence of these signatures in representations of 
moving objects, not only are enough "to animate" (within the meaning of "giving life 
to") the objects, but are essential to allow their recognition as products of a biological 
activity. All along this paper, we will review the principal studies related to the  
perception of biological motion, we will see how the designers of virtual reality appli-
cations, as those of multi-media and cinema industries take advantage from this 
knowledge, and we will see finally how virtual reality can help perception psychology 
to better understand the phenomena which gives the character ALIVE to animated 
symbolic systems. 

2   The Perception of Biological Motion 

Studies in psychology and neurophysiology obviously show that the movements of a 
human body can be easily recognized and identified in their biological, living nature. 
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The literature on the perception of the so-called biological motion is abundant and 
varied. This literature really finds its source in the seminal work of Johansson [2], 
who characterized biological motion as referring to the ambulatory patterns of bipeds 
and terrestrial quadrupeds.  

2.1   Characteristic Points Are Worth a Complex Picture: Johansson 

Johansson [2] filmed in total darkness walkers with, as only visible elements, some 
lights attached to the main joints of the body (Fig. 1). He showed that such points, 
moving on a uniform background, were perceived by observers as indicating human 
movements, in the absence of any other visual index. At the end of the 19th century, 
Muybridge and Marey had already, in an implicit way, used this faculty of our brain 
to reconstitute the complex gesture from a finished number of points (connected or 
not between them by straight lines). 

 

Fig. 1. Example of a walker on which markers are placed on specific joint 

Johansson’s experiment has been frequently reproduced and confirmed, and has 
become a traditional chapter of perception psychology. When the filmed people 
dance, the observer can eventually identify the type of dance [3], and to distinguish 
the men from the women [4]. This capability to perceive the human or biological 
character from sparse indices is innate or almost: it has been observed in children as 
early as 4 to 6 months after birth [5]. The biological nature of movement may be iden-
tified even when the group of dots corresponds to the movement of an animal [6], it 
thus does not act of a specific effect. It even seems that we have the capability to infer 
the shape and the physical properties of the body from a simple group of moving dots 
moving. Many visual demonstrations of this effect can be observed online [7, 8]. 

Most of the studies related to the perception of biological motion do not carry in 
them any attempt at explanation: they do nothing but show-up the existence of the phe-
nomenon, and in particular they highlight the need for maintaining the characteristics 
kinematics of the points, whatever they are. Some attempts at modelling of this percep-
tive capacity were however proposed, in order to explain how the three-dimensional 
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structure of the movement of the limbs of an animal could be calculated starting from 
the two-dimensional movements of some markers projected in the plan of the image [9]. 
At least two of these attempts deserve to be known. 

2.2   Paolo Viviani and the Motor Theory of Perception 

The determination of invariant characteristics of movement constitutes a millstone of 
crucial importance to the understanding of the fundamental principles of organization 
of biological motor control, concerning in particular the role of the central nervous 
system (CNS). Although his work was not directly related to the problems of the 
perception of biological motion (but rather to automatic signature recognition), Vivi-
ani contributed to the comprehension of the phenomenon. Seeking to identify an in-
variant in the morphogenesis of writing, he demonstrated the existence of a non-linear 
relation linking the angular velocity of the hand to the trajectory curvature [10, 11]: 

a(t)=kc(t)2/3 (1) 

This relation, extremely robust (the human gesture cannot violate it) strongly con-
ditions our perception. Its non-observance leads an observer to confuse the shape of 
the trajectory: a circle becomes an ellipse and vice and versa. When for example one 
observes a luminous point moving on an elliptical path according to kinematics corre-
sponding to a circle (constant angular speed), the observer perceives the point as mov-
ing along a circle. The vision is not the only sensorial modality concerned: passive 
movements of the hand induced by a computer via a robot are perceived correctly 
only if the trajectory is in conformity with that produced by an active movement. This 
law affects also the eye movements: the trajectory and the performance of visual 
tracking of a luminous moving point differ if the movement of this the point does not 
respect the law [12]. According to Viviani [13], the phenomenon finds its origin in the 
motor theory of perception: our perception of the movement is determined by our way 
to move and to act. 

The power 2/3 law is considered as being a fundamental constraint of the CNS on 
the formation of the trajectories of the end-point of the gesture (e.g. the hand), in 
particular when performing rhythmic movements. This law also appears for more 
complex movements, concerning the whole body, as in locomotion [14, 15]. Con-
fronted to a corpus of convergent experimental data, the power 2/3 law is regarded as 
an invariant of the trajectory of biological movements, impossible to circumvent and 
is often used as a criterion of evaluation of animated models [16, 17]. 

2.3   Local or Global Process: Maggie Shiffrar 

The human body may be considered as a chain of rigid, articulated elements, giving to 
the body a non-rigid aspect. Shiffrar [18] attempted to determine how we can perceive 
a body as moving, and in particular how the visual system can integrate multiple seg-
mental information on the moving body in order to perceive this movement as a sin-
gle and continuous event. The assumption is that movement (animation) allows the 
establishment of a bond (rigid or not) between the various points. Beyond the percep-
tion  of  biological  motion,  this  concept  can  be generalized to the perception of any  
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Fig. 2. Neither the trajectory of a graphic gesture (A) nor the time-course of angular velocity 
(B) reveal an invariant in the production of the gesture. On the other hand, the angular velocity 
is systematically proportional to the curvature of the trajectory raised at power 2/3 (C). 

physical object and its identification by the visual system [19]. One of the questions 
tackled by the studies on perception of biological motion relates to the primary level 
of analysis, global or local (does each point count, or is it rather the general pattern 
which is relevant?). Shiffrar pleads for a global analysis: a group of dots representing 
a walker is not anymore recognized as such if it is reversed from top to bottom [20]; 
on the other hand, the walker is identified even if the characteristic points are 
drowned in a background of random dots [21]. It should finally be considered that 
more probably neither the shape (the space distribution) of the group of dots, nor the 
characteristics of the movement of the points are enough alone to define or categorize 
human movement. The capability of the visual system to extract a human form from 
motion is based on the space-time integration of the indices of BOTH form AND 
movement and must thus be regarded as a phenomenon of both local and global  
nature [18]. 

2.4   From Perception to Memory of Biological Motion: Perceptive Anticipation 

This spatio-temporal integration does not only affect perception but also memory. 
Under certain conditions, our memory of the final position of a moving target which 
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is abruptly stopped is distorted in the direction of the represented movement [22]. In 
the same way, our memory of a static view of a moving object or character is biased 
in the direction of the movement [23]. This phenomenon, called "representational 
momentum" attests of the “interiorisation” of the physical principle of inertia. It has 
been recently shown that the perception of complex biological movements is also 
affected by this phenomenon. Thus, even in case of disruption of a visual stimulation 
corresponding to a complex gesture, the perception of the event and its dynamics 
remain, resulting in a bias of the memory of the final posture, shifted in the direction 
of the movement [24]. 

The identification of actions and human body postures is a major task of our per-
ceptive system, which depends on the point of view adopted by the observer. Indeed, 
visual recognition of a furtive human posture (presented during 60 ms) is facilitated 
by the previous presentation of identical postures, but only if these previous presenta-
tions are from close points of view [25]. In the same way, it is easier to assess the 
biological realism of a posture if the movement preceding this posture is also pre-
sented to the observer. Thus, one can anticipate the postures to result from a subject’s 
movement, facilitating the identification of these postures [26]. Other studies on per-
ceptive anticipation abound in this direction: it is enough for an observer to perceive 
the beginning of a gesture (i.e. a writing sequence) to correctly predict the nature of 
the incoming movements, and even if the produced series of letters do not form  
words [2]. 

2.5   Neural Substrates 

Perception of biological motion is not a human exclusive capability: animals, and in 
particular monkeys or pigeons are also sensitive. This allowed, through a number of 
electrophysiological studies in primates (cell recording), to determine the concerned 
cortical zones. Oram and Perrett [28] showed that neurons of the temporal superior 
area respond to this kind of specific stimuli. Newsome and Paré [29] showed that 
monkeys can detect the direction of a movement when the level of coherence is as 
low as 1% or 2%. Destruction of a specific cortical zone (MT) increased this thresh-
old of coherence to 10% or 20%. 

Brain functional imaging now makes it possible to identify, on humans, zones of 
the brain specifically activated during perception and recognition of biological mo-
tion, and especially to determine the networks involved. The supero-temporal sulcus 
seems to play a particular role in the perception of biological motion [30] (Fig. 3). 
These studies made it possible to highlight the implication of a large number of zones, 
including of course those directly concerned with vision (in particular the lingual 
gyrus [31]); and the superior occipital gyrus [32] but also perceptive processes in 
general (temporal and parietal cortices), as well as other parts of the brain generally 
concerned with the control of movement (premotor cortex, lateral cerebellum),  
thus confirming the close link between the generation of movement and its  
perception [33]. 

Thus, for example, experiments of neuroimagery carried out in monkeys [34] and 
on humans [35, 36] showed that neurons known as "mirror neurons", located in  
the  lower  part  of  the  premotor cortex are active both when one observes somebody  



6 J.-L. Vercher 

 

Fig. 3. The activity in specific zones of the brain (here the superior temporal sulcus) is modu-
lated according to the presentation of a biologically compatible stimulus vs. a non compatible 
(scrambled or inverted) [30] 

performing a gesture or when the subject is performing himself the gesture. This net-
work would have a fundamental role in the processes of training by imitation and 
social communication [37]. These studies and those concerning the role of the ventral 
and dorsal flow of visual information in motion perception are clearly related. 

3   Does Virtual Reality Have to Take into Account the Laws of 
Biological Motion? 

At this point, I would like to emphasise the need, for people involved in VR, to know 
the main theories of perception and movement control, proposed throughout the 20th 
century by the psychologists and the physiologists. These theories are in three 
categories:  

− Cognitive theories: they consider perception as a particular form of inferential 
process, although mainly unconscious. This point of view finds its origin in Hel-
moltz’ work. 

− Ecological theories, assuming that we (actors) have a privileged relation with the 
environment, and that we are directly in interaction with this latter, as proposed by 
Gibson [38]. 

− Computational theories, assuming that perception is primarily the result of data 
processing. Marr is one of the pioneers of this approach. 
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It is necessary at this stage to distinguish motion perception from perception of 
biological motion. For Davis [39], at least two reasons justify the need for motion 
perception: 

− To give a sense to the world whereas we move;  
− To understand the objects moving around us. 

It should well be understood that, in a VR context, the distinction between the two 
cases (movements of the self body in a stable environment, and movement of the 
scene around a motionless observer) is not trivial, in particular for the observer/actor 
himself, and the problem is even worse in the general case, when the observer moves 
among objects themselves in movement. In a finer analysis, Nakayama [40] suggested 
seven reasons for which perception of movement is an important issue. It allows:  

− To derive the 3rd dimension from 2D information (motion parallax); 
− To calculate the time before contact; 
− To distinguish an object from the background; 
− To obtain information related to the execution of our own movements; 
− To stimulate the ocular movements; 
− To understand patterns;  
− To perceive the moving objects. 

Warren [41] goes still further and stresses the role of the relation between action 
and perception, all together being regarded as a whole. These elements emphasise the 
importance of the detection of movement for the success of our actions. There is thus 
little doubt that movement in general helps us to understand the world and the objects 
within it. It is frequent to note that animation gives sense to pictures, which, mo-
tionless, are little informative. It is particularly true with wire-frame pictures of 3D 
objects: even a large number of lines in the graphic scene does not make possible to 
disambiguate spatial ambiguities (i.e. the Necker cube). When these images are ani-
mated and the observer is allowed to change the point of view or to make the objects 
turn, these objects suddenly take "life" and the 3rd dimension appears without effort. 
Movement parallax is indeed one of the most powerful indices of depth. 

Obstacles to a correct perception of movement are however numerous in a context 
of VR. Let us quote among others:  

− When frame frequency (sampling) is too low to maintain a sensation of movement 
continuity;  

− When latency is to high between user’s movement and the sensory feedback;  
− When incoherence between the various sensorial feedbacks (visual, haptic, sound) 

dramatically degrades perception. 

Within this framework, the processing or the simulation of biological motion is in-
deed a particular case. Multimedia industries (games, cinema) understood it particu-
larly well, even if the implementation is largely based of empirical methods. The 
guiding principle of this implementation, characters animation (virtual actors or ava-
tars) is based on techniques of movement recording (motion capture) and modelling 
(dynamic data morphing) of the kinematical data obtained in order to adjust these data 
to the geometrical properties of the avatar [42, 43]. The Web site of these authors 
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illustrates the technique [44]. These techniques, requiring off-line treatment, are not 
easily transferable to virtual reality, excepted when the goal is to animate characters 
according to a pre-established scenario. It is also possible to model certain aspects of 
the biological movements in order to take these laws into account during the anima-
tion of the avatars. The power 2/3 law is of these aspects [45]. The recent availability 
of motion capture systems and real-time animation techniques makes it possible to 
exceed these limitations [46]. Avatar animation of the main actor (the user of the VR 
system) most of the time complies with the rules of the biological motion, whatever 
they are, since this animation is done on the basis of real-time motion capture of a real 
biological being, the user himself. It remains important to check that it is so. The 
suggested procedure is as follows: 

− To reduce the animated character to his simpler expression, ideally a characteristic 
group of dots, in order to remove any source of contextual information;  

− To apply a procedure of evaluation of the biological movement by naïve observ-
ers. That proposed initially by Johansson [2] proved to be satisfactory and is suffi-
ciently validated. 

4   Will Virtual Reality Make It Possible to Better Understand the 
Perception of the Biological Motion? 

In a majority of psychological or physiological studies on perception of biological 
motion, the stimulus is often limited to a set of dots supposedly attached to the joints 
of a person. In spite of this drastic information degradation, the human visual system 
organizes the dots pattern in an undeniable percept of a biological creature. 

Various techniques were used in order to generate the group of dots, from video 
recording to pure simulation, including motion capture. If the first leaves little possi-
bility of deterioration of the signal, a combination of the two last makes it possible to 
obtain data realistic enough and to handle them on computer, with the aim of identify-
ing pertinent information [47]. Let us remember that this information, hidden in the 
space-time structure of the image, is still not clearly identified.  

It is clear that virtual reality can provide a much richer, flexible and general-
purpose tool for the psychological examination of motion perception, but also for 
physiological studies, by the conjunction of VR techniques and cerebral functional 
imaging [48]. This could not only rely on an improved picture control, but also on the 
interactive and immersive nature inherent to VR. Virtual reality is already largely 
used for the study of motion perception in general, and in particular for the perception 
of movements of the self body: real-time animation of an avatar by a subject exposed 
to a vection stimulus makes it possible on this subject to give a quantifiable image, 
other that verbal, of its illusory movement [49]. Virtual reality constitutes also an 
extremely promising tool to study space orientation, by its capacity to generate com-
plex and realistic environments (i.e. urban). It makes it possible to generate experi-
mentally controlled conflicts [50]. 

In a more general way, virtual reality offers an opportunity to create synthetic envi-
ronments with a high number of variables influencing our behaviour, and these envi-
ronments can be easily and precisely controlled; virtual reality allows the creation of 
dynamic 3D views, providing to the user (or the subject) visual information rather 
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close to that obtained in a real scene. In this direction, VR goes much further that the 
groups of dots, random or not, generally used in psychological and physiological 
experiments on vision. In this sense, VR opens the door towards a new approach of 
experimental study of perception of movement. This new approach takes really its rise 
only by the association of VR specialists on the one hand and of integrative Neurosci-
ences scientists on the other. Many associations of this kind, especially in the United 
States (such as for example VENlab at Providence [51, 52], or Loomis’ laboratory in 
Santa Barbara [53], but also in France (for example at the Marey Institute, Marseilles) 
showed the potential richness of this multi-field approach. 

5   Conclusion 

From a tremendous amount of scientific literature existing on the problem of percep-
tion of biological motion, we can retain the following points:  

− Some invariants exist in the kinematics of the movement of the animals which are 
identifiable by an observer as fundamental characteristics of life. 

− These invariants are to be sought both in the kinematics of the individual points 
and in the spatio-temporal organization of the pattern (e.g. phase ratios between all 
the points). These invariants concern the local and the global level.  

− This capability to perceive movement of biological origin is innate (it does not 
need to be learned) and cannot be unlearned. It cannot be isolated from our per-
ception of the world and our way of acting on it. Any change, even light, of these 
specific kinematics deteriorates dramatically our perceptive capabilities. 

− This capability of living beings to perceive a biological character in movement 
must be taken into account at the time of the simulation of virtual worlds, com-
petitively with other aspects of simulation which could prove, in certain cases, less 
rich in "useful" information for the user, while being, sometimes, considerably 
more expensive in resources and time.  

− Virtual reality offers an environment potentially rich for the study of perception, 
and more particularly the links between movement (or action) and perception. The 
community involved the study of perception and action understood it soon, but the 
community is far from exploiting all the potential richness. 

In conclusion, when one aims at simulating living beings acting in a virtual envi-
ronment, it appears necessary that the conceptors of VR systems have in mind a cer-
tain level of comprehension of the mechanisms of perception, not only visual, but 
concerning all the senses involved in the particular VR application. They must be able 
to exploit the variables as well as the invariants identified in previous physiological 
and psychological studies, this in order to generate and to transmit information in its 
most adapted form, according to the desired task. In addition, psychologists, who 
often regard VR as a tool well adapted to their experiments, are likely to pass beside 
fundamental questions concerning VR (i.e. perception in immersion, the nature of the 
state of immersion...). It is extremely difficult, today, to gauge which is exactly the 
level "of intercommunicability" between the two communities, but one can hope that 
it will be reinforced in the incoming years, for the benefit of the two communities. 
One of the means to go towards this goal, if not to reach it, is to gather, on precise 
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scientific objectives, multi-disciplinary project-teams bringing together data process-
ing specialists, computer scientists, cognitivists, physiologists and psychologists of 
perception and human movement. 
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Abstract. Cued Speech is an efficient method that allows orally edu-
cated deaf people to perceive a complete oral message through the visual
channel. Using this system, speakers can clarify what they say with the
complement of hand cues near the face; similar lip shapes are disam-
biguated by the addition of a manual cue. In this context, Cued Speech
represents a unique system that closely links hand movements and speech
since it is based on spoken language. In a previous study, we investigated
the temporal organization of French Cued Speech production for a single
cueing talker. A specific pattern of coordination was found: the hand an-
ticipates the lips and speech sounds. In the present study, we investigated
the cueing behavior of three additional professional cueing talkers. The
same pattern of hand cues anticipation was found. Results are discussed
with respect to inter-subject variability. A general pattern of coordina-
tion is proposed.

1 Introduction

It is well known that for many hearing-impaired people, lipreading is the key to
communicating with others in everyday situations. Unfortunately visual inter-
pretation of lip and mouth gestures alone does not allow the totality of the oral
message to be distinguished due to the ambiguity of the visual lip shapes. This
leads to a general problem of speech perception for deaf people.

Cued Speech (CS) is a visual communication system that uses handshapes
placed in different positions near the face in combination with the natural mouth
movements of speech to make the sounds of spoken language look different from
each other [1]. Adapted to more than 56 languages [2], it represents an effective
method that enhances speech perception for the deaf. With this system, speakers
while talking execute a series of hand and finger gestures near the face closely
related to what they are pronouncing; the hand, with the back facing the per-
ceiver, constitutes a cue which uniquely determines a phoneme when associated
to a lip shape. A manual cue in this system is made up of two components: the
shape of the hand (finger configuration) and the position of the hand near the
face. Hand shapes are designed to distinguish among consonants and hand posi-
tions among vowels. The manual cues are defined so that the phonemes that are
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visually similar on the lips are coded by perceptually distinctive manual cues,
with a manual cue corresponding to a subgroup of visually contrastive phonemes.
Thus manual and labial information complement each other; given alone by the
hand or the lips, the information is ambiguous. Figure 1 illustrates the manual
cues for French phonemes (Langue française Parlée Complétée, LPC; or French
Cued Speech, FCS).

This system is based on a CV (Consonant-Vowel) manual resyllabification
of speech. To code a CV syllable, one simultaneously forms the specific finger
configuration for the consonant C and moves the hand to the specific position
corresponding to the vowel V. In case of isolated consonants or vowels, one uses
the appropriate hand shapes for the consonants at the side position and uses the
corresponding positions for the vowels with hand shape 5 (see Fig. 1).

Fig. 1. Manual cues for French vowels and consonants

Seeing manual cues – the hand shape at a specific position – associated to lip
shapes allows the deaf cue perceiver to identify through vision only the exact
speech message transmitted. Many studies have shown evidence for the effective-
ness of Cued Speech for visual phoneme perception: additional manual cues can
strongly improve speech perception by deaf people from 30% to more than 90%
of accurate perception ([3], [4]). This can result in a noticeable improvement
in lipreading acquisition and oral speech decoding by deaf children using this
method. Several studies have shown evidence for the value of using CS with deaf
children particularly at early ages to acquire complete phonological representa-
tions (for a review see [5]).

The remarkable effectiveness of CS for speech perception gives some evidence
that during cued speech production, hand and lip movements are organized in a
coordinated manner. They are tightly linked by definition, since the shape and
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the position of the manual cue depends on speech. While hand and face gestures
coordination appears to be the key factor in this system (this was also empha-
sized in studies with technological purposes like automatic CS synthesis [6], [7]),
very little is known about Cued Speech production, i.e. the organization and tim-
ing of the hand and the lips in relation to speech sounds during speech cueing.
How do the manual gestures occur with speech vocalizations in the course of this
“artificial” syllabic system? What about the cue-timing strategies that make this
system so efficient for speech perception? In order to give some answers to these
questions, we previously investigated the temporal organization of French Cued
Speech (FCS) in the performance of one professional cueing speaker [8]. A spe-
cific pattern of coordination was found: the hand anticipates the lips and speech
sounds. More precisely, for cueing a CV syllable, the temporal pattern observed
was: (1) the displacement of the hand towards the target position could begin
more than 200 ms before the consonantal acoustic onset of the CV syllable. This
implied that the gesture began in fact during the preceding syllable, i.e. during
the preceding vowel. (2) The hand target was attained around the acoustic onset
of the consonant (during the first part of the consonant). (3) The hand target
position was therefore reached largely before the corresponding vocalic lip tar-
get (on average 172 to 256 ms before the vowel lip target). (4) Finally, the hand
left the position towards the next position (corresponding to the following syl-
lable) during the production of the vowel. The hand shape was entirely formed
during the hand transition: the hand shape formation was superimposed on the
hand transition from one position to another and did not disturb the manual
displacement.

The aim of the present study is to see whether this coordination pattern
was subject-dependent or is a general feature of FCS production. We therefore
recorded three other professional cueing speakers producing a wide corpus of
syllabic sequences in order to investigate the temporal pattern of Cued Speech
production across the subjects. The study focused on hand gesture timing during
FCS production, so only hand transitions were analyzed. Results are discussed
with respect to intra- and inter-speaker variability during the cued syllable pro-
duction. General observations on Cued Speech organization are proposed.

2 Method

2.1 Subjects

The subjects were three French female speakers (ranging in age from 30 to 45
years) with normal hearing. They were all nationally certified as professional
French cueing talkers and were experts in the practice of manual CS (number
of years of cueing practice ranged from 4 to 14 years with at least 17 hours of
professional cueing per week).

2.2 Corpus

Syllabic sequences decomposed as [C1V1.C1V1.C2V2.C3V1] (S0S1S2S3) were
used for the corpus with: the consonants [m] or [b] for C1; {[p], [j]}, {[s], [l]},
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{[v], [g]}, or {[b], [m]} respectively for C2 and C3; the vowels [a, i, u, ø, e]
for V1 and V2 (excluding the case where V1=V2) (e.g. [ma.ma.be.ma]; see the
complete stimulus materials in appendix). Their combination gives a total of 160
sequences involving both hand transitions and finger gestures and exploiting the
eight hand shapes and the five positions of FCS code. The analysis focused on
the embedded S2 syllable (C2V2), including the transitions from S1 syllable to
S2 and S2 to S3, in order to bypass the effects relative to the sequence onset and
offset.

2.3 Experimental Procedure

The three recordings were made in a sound-proof booth. The subject was au-
diovisually recorded by two synchronous cameras at 50 frames per second. One
camera was used to film the movement of the hand in the 2-D plane and the other
in zoom mode to accurately capture the details of lip movements. The subject
worn opaque eyeglasses used as protection against the strong lighting conditions
and as a reference point for the different measurements (the displacements of
the hand are referenced to a colored mark on one of the lenses of the eyeglasses).
The speaker uttered and coded at a normal rate the sequences, which were firstly
pronounced by an experimenter.

Hand movements consisted of trajectories from one position to another around
the face in the 2-D plane. They were therefore readily measurable in the vertical
and horizontal dimensions (x and y coordinates) and to this aim, colored markers
were placed on the back of the hand of the speaker in order to automatically
video-track hand trajectories in the plane. Lips were painted blue in order to
extract the internal lip contours using the video processing system of Institut de
la Communication Parlée [9]. This software provides labial cinematic parameters;
we selected lip area function as a good articulatory descriptor of the lips [10]
since it is the parameter most directly related to vowel acoustics [11]. Thus
processing of the video delivered the x and y coordinates of the hand markers
and lip area values as a function of time every 20 milliseconds. The acoustic
signal was digitized synchronously with the video signal and sampled at 44100
Hz. Thus, at the end of data processing, four synchronous signals versus time
were obtained for each sequence: lip area evolution (50 Hz), x and y coordinates
of the hand markers (50 Hz) and acoustic signal (44100 Hz). Data extraction is
illustrated in Fig. 2, which shows segments of the four signals versus time for
the [ma.ma.be.ma] sequence produced by one of the subjects.

The signals for lip area, hand horizontal displacement (x) and hand vertical
displacement (y) as a function of time were differentiated and low-pass filtered
to obtain time-aligned acceleration traces (not shown on Fig. 2). For the analy-
sis, on each signal, temporal events of interest relative to the syllable under
study were manually labeled: the onset of consonant acoustic realization (A1)
defined on the acoustic waveform and the spectrogram; the vocalic lip target (L2)
defined as the moment the lip movement to form the vowel target ends (corre-
sponding to a peak on the acceleration trace); the onset and offset of hand move-
ment delimiting the manual transition coding the S2 syllable (M1 and M2) and
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Fig. 2. Signals versus time for [ma.be.ma], part of the [ma.ma.be.ma] sequence of
subject 2. From top to bottom: temporal evolution of lip area (cm2), x trajectory of
the hand mark (cm), y trajectory of the hand mark (cm) and acoustic signal (s). On
each signal, labels used for the analysis are indicated: L2 (vocalic lip target), M1 (hand
movement onset for [be] syllable), M2 (hand movement offset for [be] syllable), M3
(hand movement onset for [ma] syllable), M4 (hand movement offset for [ma] syllable)
and A1 (acoustic onset of the syllable). See text for the definition of the intervals.

labeled on acceleration and deceleration peaks moments ([12],[13]) and finally
the onset and offset of hand movement delimiting the manual transition coding
the following syllable S3 (M3 and M4). For more details on data processing, see
the description of the method in [8].

2.4 Labels to Production Features

As indicated above, syllable S2 of each [S0S1S2S3] sequence is the critical syl-
lable, i.e. the syllable analyzed. From the acoustic signal, we calculated syllable
duration and consonant duration for each sequence. In order to compare the
temporal structure of the different signals, some duration intervals were calcu-
lated by subtracting the times of cinematic events or acoustic events from one
another:

– M1A1, the interval between the onset of the manual gesture and the acoustic
onset of the consonant;

– A1M2, the interval between the acoustic consonant onset and the offset of
the manual gesture;
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– M1M2, the interval between the onset and the offset of the manual gesture
for S2 vowel;

– M2L2, the interval between the instant the hand position is reached and the
moment the lips form the vocalic target;

– M3L2, the interval between the instant the hand leaves the position toward
the following position (coding S3) and the vocalic lip target;

– M3M4, the interval between the onset and the offset of the manual gesture
for S3 vowel.

The duration of each interval was first computed as the arithmetic difference
(for example M1A1=A1−M1 (ms)). Thus, considering a XY temporal interval,
a positive value indicates that event X occurs temporally before event Y; con-
versely a negative value indicates that event X occurs after event Y. The duration
of each interval was then quantified as a percentage relative to the duration of
the corresponding syllable (%rel). This means that the results will be presented
relative to the corresponding temporal information of the acoustic syllable. So a
value of 100 indicates that the interval has the same duration of the acoustic CV
syllable. And a value smaller than 100 indicates that the interval has a smaller
duration than that of the acoustic CV syllable.

3 Results

Results are first presented with milliseconds values: this gives a temporal coor-
dination pattern for hand, lips and speech sounds. Results are then normalized
in order to statistically compare cueing behaviors of the three subjects.

3.1 A Temporal Pattern of Coordination

Results in milliseconds are shown in Table 1. First of all, we notice a great
similarity in duration for the three subjects. The three cued speech rates are
very close: a mean value of 4 Hz calculated from the mean syllable durations was
obtained. A one-way analysis of variance (ANOVA) was performed indicating
the similarity of the CV syllable duration over the three subjects (F < 1). With
respect to hand transitions, we notice the proximity of the manual transition
durations for each subject: M1M2 and M3M4 intervals are very similar. This
result reveals that the rhythm generated by the hand moving from one position
to another is rather stable within a subject, whether the hand arrives at or leaves
the target position.

With respect to the coordination between hand, lips and sound, we notice from
the intervals that the hand gesture is always initiated in advance of the sound
for the three subjects: M1A1 interval can vary on average from 143 ms to 153
ms depending on the subject. When looking at the individual items, it should be
noted that across all sequences and all subjects, only three items demonstrated
a slight delay of the hand over the sound (in fact, closer to synchrony): the
anticipatory behavior of the hand thus appears to be a general feature of FCS
production. The hand target position is reached during the acoustic production
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Table 1. For each of the three subjects, means and standard deviations (into brack-
ets) in milliseconds for all the production features: CV syllable duration, consonant
duration, M1M2, M1A1, A1M2, M2L2, M3L2 and M3M4 (See text for details)

Mean duration in ms (std) Subject 1 Subject 2 Subject 3

CV syllable 252 (41) 253 (45) 258 (56)
Consonant 119 (37) 141 (41) 147 (51)
M1M2 170 (29) 174 (37) 192 (33)
M1A1 153 (56) 145 (56) 143 (50)
A1M2 17 (51) 29 (55) 49 (49)
M2L2 155 (54) 143 (50) 123 (66)
M3L2 9 (73) -13 (57) -41 (64)
M3M4 183 (34) 175 (33) 197 (37)

of the consonant: A1M2 interval can vary from 17 ms to 49 ms. This result
shows that the hand position is reached just after the acoustic beginning of the
consonant, during its first part (the calculation of the corresponding proportions
with respect to consonant duration indicates that the manual position is attained
at 14% of the consonant duration for subject 1, 21% for subject 2 and 33% for
subject 3). With respect to the lips, the hand is placed at the target position well
before the vocalic lip target: M2L2 interval can vary on average from 123 ms to
155 ms. Thus the vocalic information delivered by the hand position is always
in advance of the one delivered by lip shape. Finally, the hand maintains the
target position throughout the production of the consonant and then leaves the
position toward the following position around the vocalic lip target realization:
indeed, M3L2 interval can vary from −41 ms to 9 ms depending on the subject.
This interval demonstrated more variability over the subjects, but what emerges
is that the hand leaves the position during the production of the acoustic vowel.

To sum up, the following pattern for FCS production can be built from the
temporal intervals obtained: the hand begins its movement before the acoustic
onset of the syllable (M1A1 from 143 to 153 ms) and attains its position at the
beginning of the syllable (A1M2 from 17 to 49 ms), well before the vocalic lip
target (M2L2 from 123 to 155 ms). The hand then leaves the position towards
the next position during the vowel. This pattern of coordination appears to
be organized exactly the same way as the one obtained previously for a single
subject [8]. So the anticipatory behavior of the hand over the lips and the sound
appears to be a general feature of FCS production.

3.2 Inter-subject Comparison

With respect to this pattern of coordination, we statistically compared results
from the three subjects. To normalize their results, the temporal intervals were
quantified as percentages relative to the CV syllable duration of each item (%rel).
Results obtained are shown in Table 2.

The three subjects seem to have a quite similar temporal pattern of coordina-
tion, as was emphasized before. All three subjects show an advance of the hand
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Table 2. For each of the three subjects, means and standard deviations (into brack-
ets) of the production features quantified as percentages relatively to the CV syllable
duration (%rel): M1A1, A1M2, M2L2 and M3L2 (See text for details)

Mean duration in ms (std) Subject 1 Subject 2 Subject 3

M1A1 63 (28) 61 (29) 60 (27)
A1M2 6 (21) 10 (22) 18 (19)
M2L2 62 (21) 57 (20) 47 (23)
M3L2 4 (30) -6 (23) -18 (27)

transition onset with respect to the acoustic syllable onset (M1A1 ranging from
60 to 63%rel): these means are statistically comparable as it is shown by a non-
significant result of ANOVA (F < 1). For the three subjects, the hand transi-
tion ends after the syllable onset (A1M2 from 6 to 18%rel), more precisely in the
first part of the consonant. A one-way ANOVA shows that A1M2 intervals are
somehow different (F(2, 474)= 14.9, p < .0001). Post-hoc comparisons (Scheffé)
showed that the behavior of subject 3 differs from that of the other two (p < .01);
with respect to acoustic consonant onset the hand target position is reached later
for this subject. For the three subjects, the hand position is on average attained
well before the vowel lip target (M2L2 in the range of 47 to 62%rel). Statistically,
the durations appear to be different (ANOVA, F(2, 474)= 18.7, p < .0001). The
post-hoc tests again show that it is the behavior of subject 3 which differs from
the others (p < .01); the hand target position anticipation over the lip target ap-
pears to be less important. Finally, the three subjects seem to demonstrate more
variability concerning the moment the hand leaves the position toward the next
position: the ANOVA applied shows that the M3L2 durations are different (F(2,
474)= 24.8, p < .0001). Again, the post-hoc multiple comparisons show that sub-
ject 3 differs from the others (p < .01); for this subject, with respect to the vocalic
lip target, the hand leaves the position for the following one later than for the other
two subjects. Thus the movement onset of the hand seems not to be related to the
vocalic target on the lips: rather the hand begins the transition during the acoustic
vowel realization. The differences found for subject 3 reveal that this cuer tends
to make longer hand transitions and this way, the temporal pattern of hand and
speech coordination is shifted back.

4 Discussion and Conclusion

This work describes the investigation of French Cued Speech production in three
different subjects certified in manual cueing. We focused on the temporal orga-
nization of the hand gestures with respect to lip gestures and acoustic events
in the CV syllabic domain. The extracted temporal intervals were considered
in milliseconds as well as in percentages relative to the syllable duration. This
makes it possible to consider the different syllable durations obtained between
the different utterances and across subjects, allowing us to deal with intra- and
inter-speaker variability during production of cued syllables.
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Fig. 3. General temporal pattern of FCS production from results of the three FCS
speakers. The temporal events for sound, lip gesture and hand transition are indicated
with the range of mean values of intervals (in percentage of the CV syllable duration).

The three subjects were recorded with a wide corpus involving both hand
transitions and finger gestures. The investigation focused on hand transitions.
Concerning speech rhythm, the mean value of 4 Hz obtained confirms the slow-
ing down of speech during Cued Speech, which was already observed by [7]
who indicates a value of 100 wpm, i.e. a range between 3 to 5 Hz for the syl-
labic rhythm. Concerning the organization of FCS production, each subject re-
veals a pattern of coordination very similar to the pattern previously described
for a single subject [8], with comparable values for each interval. At the sta-
tistical level, subject 3 appears to slightly differ from the other two subjects.
It seems that this talker has slower transitional hand gestures: this difference
could be explained by the level of FCS exercise. Indeed, subject 3 practices
FCS for middle school/ junior high school (collège) students, whereas subject
1 and subject 2 practice FCS at the high school (lycée) level, where the dif-
ficulty level and scholarly rhythm are incontestably higher. Despite these dif-
ferences, the three subjects demonstrated a very similar temporal pattern of
coordination.

So the general pattern of hand and speech coordination proposed for a cued
CV syllable is the following (also illustrated in Fig. 3):

1. the hand begins its movement before acoustic onset of the syllable;
2. the hand attains its position in the first part of the consonant;
3. the position hence is reached before the vocalic lip target;
4. and finally the hand leaves the position during the vowel.

Proposition 1 appears to be the more consistent across the subjects, with
very similar values for this interval (across the subjects, from 60 to 63%rel of
the syllable duration). It ensues that a temporal constraint should be that the
hand transition onset occurs prior to acoustic onset of the syllable so that the
duration between these two events represents around 60 percent of the whole
cued CV syllable duration. This was the general behavior observed for each
subject concerning the hand movement onset. Proposition 2 is always validated
by the three different subjects. The interval duration obtained for each sub-
ject was not exactly the same but the constraint here should be that the hand
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must point to the spatial target position during the first part of the conso-
nant. There is here a temporal “rendez-vous” between the hand position and
the consonant onset. Since the cued position is attained during the consonant,
proposition 3 that the hand anticipates the vocalic lip target is always val-
idated, even if the interval between the manual target and the labial target
can differ according to the subject. So it appears that the anticipatory behav-
ior of the hand is a general rule of FCS production. The hand position de-
livers the manual vocalic information before the lip shape delivers the labial
vocalic information. Finally, proposition 4 that the hand begins the transi-
tion during the acoustic production of the vowel is also validated by all the
subjects.

We can conclude that the anticipatory relationship that was found in the
single subject study [8] is not idiosyncratic to this individual, but is found con-
sistently on other proficient cueing speakers. It should be noticed that a manual
advance was also suggested by [7] in their automatic cueing system (“. . . human
cuers often begin to form cues well before producing audible sound”, p. 491).
More generally, the manual anticipation is also found in contexts different from
Cued Speech: for example for co-verbal iconic gestures related to speech, it ap-
pears that the hand begins the gesture more than 200 ms before speech [14].
According to [15], the gesture onset never occurs after the speech onset. So it
seems that this anticipatory behavior of the hand is a general feature of manual
gesture. For co-speech gestures, this coordination can reflect the common origin
of gestures and speech which can take place at different levels of computational
stages of speech production depending on the type of gestures considered [14],
[15]. However Cued Speech represents a unique system that very tightly links the
hand to speech. The common function is not at the semantic level, like for the
most part of co-speech gestures, but acts at the phonological level, since the Cued
Speech code (hand position and handshape) is determined by speech phonemes
by definition. We have found that this “artificial” manual system is completely
anchored to the natural speech, with the hand position target and the consonant
onset clearly phase-locked. According to us, this coordination can result from an
optimal hand-speech control strategy linked to the types of neural motor control
(local and postural controls; [16]) of consonants and vowels in Cued Speech and
visible speech (see [8] for a detailed discussion). In this view, the vocalic manual
contact control and the consonantal contact control of visible speech, which are
compatible types of motor control, are synchronized. Obviously this hypothesis
needs further investigations particularly in the field of neural control of Cued
Speech.

A first study on cued speech perception, using a gating paradigm, allows
us to propose that this specific temporal organization is retrieved and used by
deaf perceivers decoding FCS ([17]). Preliminary results showed that the deaf
perceivers did exploit the manual anticipation: perception of the hand gives first
a subgroup of possibilities for the phonemes pronounced; the lips then give the
unique solution. It therefore seems that the organization of FCS in production
is used for the perception.
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tomatique des contours des lèvres. Doctoral thesis, INP Grenoble (1991)
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Appendix

Table 3. Complete stimulus materials

mamapija mimipaji mumupaju mømøpajø memepaje
mamapuja mimipuji mumupiju mømøpijø memepije
mamapøja mimipøji mumupøju mømøpujø memepuje
mamapeja mimipeji mumupeju mømøpejø memepøje
mamajipa mimijapi mumujapu mømøjapø memejape
mamajupa mimijupi mumujipu mømøjipø memejipe
mamajøpa mimijøpi mumujøpu mømøjupø memejupe
mamajepa mimijepi mumujepu mømøjepø memejøpe
mamasila mimisali mumusalu mømøsalø memesale
mamasula mimisuli mumusilu mømøsilø memesile
mamasøla mimisøli mumusølu mømøsulø memesule
mamasela mimiseli mumuselu mømøselø memesøle
mamalisa mimilasi mumulasu mømølasø memelase
mamalusa mimilusi mumulisu mømølisø memelise
mamaløsa mimiløsi mumuløsu mømølusø memeluse
mamalesa mimilesa mumulesu mømølesø memeløse
mamaviga mimivagi mumuvagu mømøvagø memevage
mamavuga mimivugi mumuvigu mømøvigø memevige
mamavøga mimivøgi mumuvøgu mømøvugø memevuge
mamavega mimivegi mumuvegu mømøvegø memevøge
mamagiva mimigavi mumugavu mømøgavø memegave
mamaguva mimiguvi mumugivu mømøgivø memegive
mamagøva mimigøvi mumugøvu mømøguvø memeguve
mamageva mimigevi mumugevu mømøgevø memegøve
mamabima mimibami mumubamu mømøbamø memebame
mamabuma mimibumi mumubimu mømøbimø memebime
mamabøma mimibømi mumubømu mømøbumø memebume
mamabema mimibemi mumubemu mømøbemø memebøme
babamiba bibimabi bubumabu bøbømabø bebemabe
babamuba bibimubi bubumibu bøbømibø bebemibe
babamøba bibimøbi bubumøbu bøbømubø bebemube
babameba bibimebi bubumebu bøbømebø bebemøbe
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Abstract. Sign language processing is often performed by processing
each individual sign. Such an approach relies on an exhaustive descrip-
tion of the signs and does not take in account the spatial structure of the
sentence. In this paper, we will present a general model of sign language
sentences that uses the construction of the signing space as a represen-
tation of both the meaning and the realisation of the sentence. We will
propose a computational model of this construction and explain how it
can be attached to a sign language grammar model to help both analysis
and generation of sign language utterances.

1 Introduction

Sign languages, such as the French sign language, use gestures instead of sounds
to convey a meaning. They are deaf peoples’ natural languages. Unlike oral
languages, sign languages are characterized by a great multilinearity due to the
fact that the signer can simultaneously use several body parts to communicate:
hand configuration, localisation and motion, facial expression, body motion,. . .

Most of the time, one considers two levels of language: standard utterances
that only use standard signs, the ones that can be found in dictionaries, and
iconic utterances, so-called “classifier predicates”, where most of the meaning
relies on iconic structures. Iconic structures are widely used in spontaneous sign
language so that they need to be taken in account in automatic sign language
processing systems.

Works in French Sign Language (FSL) linguistics [4][3] have shown that, in
both standard and iconic utterances, the meaning of a sign language production
could be accessed by considering the construction of the signing space. The sign-
ing space is the space surrounding the signer and where the signs are produced.
During this production, the signer will use that space to position the entities
that are evoked in the sentence and to materialize their semanting relationships,
so that the resulting construction can be considered as a representation of the
meaning of the discourse.

In this paper, we propose a computational representation of this organisa-
tion, and describe how this representation can be used to help both automatic
interpretation and generation of sign language.

S. Gibet, N. Courty, and J.-F. Kamp (Eds.): GW 2005, LNAI 3881, pp. 25–36, 2006.
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2 Previous Work

Most of existing works on the description of sign language focus on describing, as
precisely as possible, the gestures that are used to produce the signs. Linguistic
sign description systems such as W.S. Stokoe’s [5] or, more recently, HamNoSys
[20] led to descriptions based on discrete sets of parameters and values to describe
signs (hand configurations, elementary motions,. . . ).

In the field of sign language automatic processing, those description systems
have been used as templates to define the primitives that have to be character-
ized for sign recognition. For instance, C. Vogler and D. Metaxas [6][7] use the
Liddel&Johnson description system [21] and R.H. Liang, M. Ouhyoung [18] the
Stokoe notation, to define the primitives to identify. In the field of sign language
uterrances generation, the VisiCast project is based on SigML which is an XML
implementation of the HamNoSys notation system [10][11].

Many other works, especially in the field of vision-based sign recognition, use
specific feature vectors depending on the data available for recognition, as in [1]
or [17]. Only a few one take in account the spatial structure of the utterance. In
the field of automatic translation, H. Sagawa et al. [19] propose a vision-based
sign recognition system that handles directional verbs and A. Braffort’s sign
language traduction system, Argo [2], is able to translate iconic sentences that
have a fixed structure, by using a single dataglove. The sign language generation
system by S. Gibet and T. Lebourque [22] allows the generation of spatially
arranged sentences by including the notion of targets to specify gestures which
enables the use of explicit designations and directional verbs. Finally, M. Huen-
erfauth [13] proposes a classifier predicate generation system based on a virtual
reality system that is used to specify the relative locations of the entities evoked
in the predicate.

But, for the moment, none of these works led to a global model of sign lan-
guage utterances spatial structure.

3 A Computational Signing Space Representation

The initial goal of this modelisation was to provide a internal representation of
a sign language sentence for vision-based sign language analysis purposes. To
avoid the risk of an abusive simplification implied by an incomplete description,
it focuses on representing a subset of the sign language. This subset concerns
sentences produced in the context of a timetable, that means sentences that
brings on play persons, places, dates and actions.

3.1 What to Represent in That Model ?

The construction of the signing space is mainly useful to represent the relation-
ships between the entities evoked in the discourse, which can be done without
knowing the exact kind of those entities. From this point of view, the signing
space representation does not have to represent exactly every notion evoked in
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Fig. 1. Symbolic view of the signing space showing the time lines where the dates may
be located

the signed production. It is limited to those that may be involved in some rela-
tionship, so that the entities can be distinguished by the relationships that may
link them.

From a cognitive point of view [23][14][9], there are only a few possible rela-
tionships that can be evoked in a sentence :

– Temporal relationships that can be either absolute or relative to the current
time of the production.

– Spatial locations between two entities.
– Actions that can link two or more entities.

In the FSL, entities are evoked through signs and located in the signing space so
that their relative position will correspond with the spatial relationships between
those entities in the real world. Temporal relationships are evoked through en-
tities that are located on “time lines” (fig. 1). Finally binary actions are evoked
through directional verbs and more complex ones by grammatical structures
called “transfers” in [3].

Different kinds of entities depend on the kind of the relationships in which
they may be involved :

– dates can be involved in temporal relationships ;
– places in spatial relationships ;
– animateds can perform an action or be located in relation to another ;
– finally actions can be referenced as a moment in time or as a protagonist of

an action.

The specificities of the French sign language grammar require to consider some
additional kind of entities: one needs to make a distinction between entities
that whenever involved in a complex action are evoked by the signer taking
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Table 1. Different kinds of entities that may be evoked in a signed sentence and
relationships that can exist between them

Entity Potential relationships
Relative
temporal
location

Absolute
temporal
location

Spatial
location

Action

Date × ×
Place ×
Animate × ×
Person × ×
Action × ×
Object × ×
Implicit × ×

their role(persons1) and the entities that cannot be evoked that way (objects).
Finally, due to the temporal ordering of the signs, one needs to take in account
the case of actions that are evoked before one of their protagonists. This entity
has an implicit Type.

Table 1 gives an overview of the different kinds of entities that can be evoked
depending on the relationships that may link them.

3.2 General Structure of the Model

The symbolic representation of the signing space consists in a cube surrounding
the signer, regularly divided into Site(s)2. Each location may contain a single
Entity, each Entity having a Referent. A Referent is a semantic notion that can
be found in the discourse. Once it has been placed in the signing space, it becomes
an Entity and has a role in the sentence. So that, building a representation of a
sign language sentence consists in creating a set of Entities in the SigningSpace.
The meaning contained in this signing space construction is represented in terms
of Entities(s) whose Referent(s) can have successively different function(s) during
the construction of the sentence (locative, agent,. . . ). A set of rules maintains
the consistency of the representation by verifying that enough and coherent
information has been provided when one needs to create a new entity in the
signing space. The figure (fig. 2) describes the global architecture of the model
in the UML notation standard.

3.3 Creating a New Entity in the Signing Space

Every time a new entity is created in the signing space, specific mechanisms
are used to ensure the consistency of the new signing space instanciation. Those
mechanisms depend on the type of that entity.
1 In French sign language, persons are not necessarily humans, they can be assimilated

to animals or even objects of the real world in humorous stories for example.
2 Terms written using a slanted font are elements of the model.
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SigningSpace
+sites[27]: Site

Site  27

Entity

<<Function>>
Locative

<<Function>>
Agent

 0..*

Function

<<Function>>
RelativeTemporalLocative

<<Function>>
AbsoluteTemporalLocative

Referent

<<Referent>>
Location

<<Referent>>
Date

<<Referent>>
Animate

<<Referent>>
Person

<<Referent>>
Action

1

{Xor}

<<Referent>>
Object

Implicit

 1

{Xor} {Xor}

{Xor}

{Xor}

Fig. 2. UML class diagram of the semantic representation of the SigningSpace. The
SigningSpace is regularity divided into Sites. Each Site can contain a single Entity
whose Referent can have several Function(s) during the realisation of the sequence.

Creating a Generic Entity. Generic entities, that are neither Date(s) nor
Action(s), can have two Function(s) : Locative or Agent. Their default function
is Locative. When such an entity is created in a given Site, a new Referent of
the given Type is created. In the case of an automatic analysis system that
doesn’t take in account the lexicon, it not possible to determine the exact Type

Function:Locative

User

Referent:r

Entity:E<<create>>

Site:empl

<<create>>

activateSite

SigningSpace:ES

activatesetSite

<<create>>

setFunction

Fig. 3. UML sequence diagram describing the modications of the signing space result-
ing of the creation of a generic Entity in that space
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User

Referent:Date:d

Entity<<create>>

Site:S

<<create>>

ActivateSite

SigningSpace:ES

active
setSite

SiteOnTimeLine

[SiteOnAbsoluteTimeLine]<<create>>
Function:AbsoluteTemporalLocative

Function:RelativeTemporalLocative

[SiteOnRelativeTimeLine]<<create>>

setFonction

setFunction

Fig. 4. UML sequence diagrams describing the modications of the signing space result-
ing of the creation of a new Date in that space

of the entity so that it remains unknown and can potentially be implied in every
kind of relationship. The exact Type of such an entity will be later changed
depending on its successive Function(s) during the production of the utterance.
The mecanisms that lead to the creation of such an entity are described as an
UML sequence diagram in figure 3.

Creating a Date. The modifications of the SigningSpace in the case of the
creation of a Date are quite the same as those used to create a generic Entity.
Their default Function, which can be either an Absolute or a Relative temporal
locative, depends on its location on one of the time lines (fig. 1). The details of
those mechanisms are given in figure 4.

Creating an Action. Action(s) don’t have their own Location. They link sev-
eral entities depending on the Arity of the Action. Those entities are Protago-

while
 (nbProtagonists 

!= arity)
loop

end loop

User

Referent:Action:a

Entity<<create>>

Site:S

<<create>>

ActivateSite

SigningSpace:ES

AskForArity

activate

Contents

[contents==NULL]<<create>>

[contents!=NULL]addProtagonist(Contents)

nbProtagonists

Referent:Objet:Implicit

addProtagonist(this)

Fonction: Locative:l
<<create>>

setFonction(this)

Fig. 5. UML sequence diagrams describing the modications of the signing space result-
ing of the creation of a new Action in that space
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nist(s) of the Action and their new Function is Agent. Protagonists are defined
thru the Site(s) that are activated when the signer evokes the Action. In the
case of a Site being empty, an Implicit Entity is created in this Site (fig. 5).

3.4 An Example of the Construction of the Signing Space

As an illustration of the use of that model, we will now describe the construction
of a SigningSpace corresponding to an utterance that concerns a question on

Fig. 6. An example of the construction of the signing space during the realisation of
a sign language sentence built with the interactive video sequences transcription tool
4. The sign-to-word translation of that sentence is : “In Toulouse (1) - In the movie
theatre called Utopia (2) - The movie (3) - In this theater (4) - Thursday february the
26th at 9 : 30 pm (5) - the one who (6) - made (7) - That movie (8) - Who is it ? (9).
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Table 2. Geometric primitives that are used to represent different kinds of entities in
the 3D representation of the SigningSpace

Type of the entity Geometric primitive
Date white horizontal cross
Place yellow horizontal disc

Personne red vertical cylinder
Action arrow
Object green cube

a cinema program : “Who is the director of the movie that plays at 9.30 pm
on thursday february the 26th in Toulouse at the Utopia”. The sign-to-word
translation of that sentence is : “In Toulouse (1) - In the movie theatre called
Utopia (2) - The movie (3) - In this theater (4) - Thursday february the 26th at
9 : 30 pm (5) - the one who (6) - made (7) - That movie (8) - Who is it ? (9). The
successive configurations of the SigningSpace are represented by 3D scenes in
figure 6. In this SigningSpace representation, each kind of Entity corresponds to
a geometric primitive as detailled in table 2. This transcription was made using
an interactive application that allows to manually build the signing space and
that implements our model. During the production of the utterance, entities
are successively created in the signing space by the mean of signs or specific
grammatical structures in the following order :

1. The first Entity to be created is a Place that is located on the left of the
SigningSpace and that corresponds to the city of Toulouse.

2. A second place is created in the same Site of the SigningSpace this means
that the movie theater is located in Toulouse.

3. The movie that plays in that theater is prepresented by an Object that is
located in the same Site as the movie theater, thus meaning that the movie
plays in that movie theater.

4. The Date is located in front of the signer in a Site that is located on the
time line.

5. An Entity whose Type is Person is created and located on the right of the
SigningSpace.

6. The person is linked to the movie by the mean of an Action so that both the
person and the movie become Protagonist(s) of that Action. Their Function
is changed into Agent.

7. Finally, the question that concerns the person is evoked in the same Site
as the person. Note that entities whose Type is question are specific to the
interactive implementation of our model.

4 Using the Model

The representation of the signing space can be linked to the meaning of the dis-
course by giving access to the relationships between entities that were evoked and
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referenced. On the other hand, the iconicity theory by C. Cuxac [4][3] provides
a description of the grammar of the sign language in terms of gesture sequences
that leads to creating a new entity in the signing space so that it permits to link
this representation to the gestures that where used to create the current sign-
ing space instantiation [15][16]. Such a predictive model can be used for both
analysis and generation of sign language sentences.

Using the Signing Space for Sign Language Analysis. Using that
model for sign language analysis leads to two classes of tools : interactive tools
intended for linguists to evaluate the model and automatic analysis tools that
can be used in many fields of application (linguistic analysis, automatic
interpretation,. . . ).

At present time, an interactive tool has been developed in order to represent
the construction of the signing space during the production of the utterance. This
tool consists in a transcription software that allows to synchroneously link the
different steps of the construction of the signing space and the video sequence
that is transcripted. This application was designed to evaluate the model on
several kinds of utterances and to determine how this model can be considered
as a generic representation of sign language utterances.

In the field of automatic analysis, due to the fact that it is not possible,
using a single camera, to build an exhaustive description of the gestures that
are used, for automatic vision-based sign language analysis, the model of the
signing space is used as a general representation of the structure of the sen-
tence that allows simultaneously to access the meaning of the discourse. The
grammar of the sign language that can be attached to that construction al-
lows the use of a prediction/verification approach [16][8]: being given an
hypothesis on the meaning of the discourse in terms of a signing space mod-
ification, it is possible to infer the gestures that where used to create the new
entity in the signing space. Analysing the utterance is then reduced to verify
whenever the data corroborates this prediction or not. Such an analysis can
be performed without taking in account the lexicon, so that the gestures’ de-
scriptions that can be used need to be less precise that the ones required for
exhaustive sign recognition. This makes the analysis of low resolution images
possible.

However, in a reduced context, the spatial structure of the sentence may be a
interesting guideline to identify the signs as it can be done by only considering
discriminative aspects of the signs. For instance, by requesting a database con-
cerning airline travels, places will be evoked by the name of the towns that can
be identified by only considering hand positions.

The three different elements of such automatic tool (signing space represen-
tation, grammatical model, low level image processing) have been evaluated se-
parately. It has been shown that in a reduced context, the prediction/verification
approach that is described above was relevant and allowed to use simple 2D im-
age processing operators instead of complex gesture reconstruction alorithms to
performs the identification of the different kinds of entities that where used in
the utterance.
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Using the Model for Sign Language Generation. For sign language syn-
thesis, signing space modelling may be used to describe the general structure
of the sentence to generate : the sentence is described as a temporally ordered
sequence of the entities’ creation. So that it is possible to attach to each entity’s
creation a preliminary description of the underlying gestures that will be used to
constrain the generation of the signs properly speaking. This approach provides
an easy-to-use way to describe the sentence to generate and will lead to pro-
duce spatially organized sentences that are much closer to natural sign language
productions than simple coarticulated sign sequences.

The use of the model for sign language generation purposes has been
studied in several fields of applications, but the existing elements of the sign
language model have not been included in any sign language generation system
for now.

5 Conclusion

By looking for a sign language representation that could be used for sign language
image analysis, we proposed a general model of the structure of sign language
sentences that takes in account the spatial organisation of those utterances. As
this representation can be attached to the gestures that where used to produce
the sentence, it constitutes a generic model of the sign language grammar that
does not need a fine gesture description. The predictive nature of this model
makes it useful for both analysis and generation of sign language.

Moreover one of the main interests of our signing space representation is the
possibility to use it, eventually interactively, as a transcription system for sign
language sentences. This aspect suggests a new approach to study a written
form of the sign language as well as for linguistic studies on the sign language
grammar. The integration of the sign language model in a sign language analy-
sis system requires its formalisation and will enable the linguists to collate the
linguistic assumptions on this grammar to its application through the interpre-
tation of the sequence.

Finally, gesture descriptions that are used in this model rely on functionnal
terms such as “pointing out a place” or “produce a sign in a given place” rather
than perceptual terms [12], which point out the interest of this kind of approach
for gesture interpretation.
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Abstract. This paper belongs to computational linguistics, with reference to 
French Sign Language (FSL) which is used within French deaf community. Our 
proposed modelling is intended: to provide computational modelling of a se-
mantico-cognitive formalisation of the FSL linguistic structure, and to allow its 
implementation and integration in applications dedicated to FSL, such as analy-
sis in image processing, automatic recognition, generation of writing forms or 
realisation by signing avatars. 

1   Introduction 

French Sign Language (FSL) is the language practised by the French deaf community. 
Like all Sign Languages (SL) around the world, FSL intensively uses the signing 
space located in front of the signer in order to describe entities, express semantic 
relations, and conjugate directional verbs. Several “articulators” are simultaneously 
used to elaborate and structure discourse (hands, arms, gaze, mimic, chest), each of 
them having one or several specific linguistic roles, and possibly interacting with 
other ones. 

Due to its visuo-gestural channel specificity, FSL allows to “tell”, but also to 
“show while telling” [1]. This capacity is typically exploited in semantic relations 
between entities, allowing the signer to explicitly show the relation in the signing 
space. A simple example of such spatialised semantic relations is the spatial relation 
(i.e. “in”, “on”, “near”…) between two entities. The relation is not express directly 
between the entities, but specific configurations performed at selected locations in the 
signing space [1]. These configurations are not chosen without reason, and utterance 
structure is not arbitrary. 

This paper describes a formal representation of such relations, as well as a compu-
tational model. The proposed modelling has two aims: to provide a computational 
modelling of a semantico-cognitive formalisation of the linguistic structure of FSL, 
and to allow its implementation and integration in applications dedicated to FSL, such 
as analysis in image processing, automatic recognition, generation of writing forms or 
realisation by signing avatars. 

The next section relates this work to similar studies. Our formalism is introduced 
within Section 3 and the computational model in Section 4. The last section offers our 
conclusion and prospects. 
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2   Related Studies 

If linguistic studies devoted to particular aspects of sign languages such as iconicity  
or space structure have been published for various SL, like FLS [1][2][3][4][5],  
or American Sign Language (ASL) [6][7][8], research in computational linguistics 
dedicated to these aspects is relatively recent and is much less developed.  

Most of the studies on computational aspects are carried out in the context of a 
given application, such as automatic generation of SL utterances performed by a sign-
ing avatar. In several studies, the proposed modelling of SL structures integrates  
syntactic representations and sometimes even semantic representations, more or less 
specific to SL. The following examples concern the translation of text into SL  
utterances. 

In the TGT project [9], there is no specific representation of the structures of SL 
and the signs order is almost the same as word order in the input sentence. This kind 
of approach cannot be applied to spatialised sentences. In the Team [10] and the ASL 
workbench [11] projects, some representations specific to SL are proposed, allowing 
for example to represent directional verbs. But there is no mean to represent sentences 
with spatial locating and iconicity.  

Other projects aim specific SL structures to be represented. In the European  
Visicast [12] and then eSign [13] projects, some representations specific to SL are 
proposed, including non-manual features such as eye gaze, head and shoulders move-
ments, and precise mimics. But the structure of the signing space is for the moment 
limited to a set of predefined locations. An original approach [14] explicitly proposes 
a modelling of the signing space. The system, not yet implemented, should be able to 
produce spatialised sentences including classifier predicates. 

In France, the first studies on computational modelling of LSF were also developed 
in a specific context. In [15], modelling of signing space was proposed to allow the 
interpretation of directional verb conjugation in the context of automatic recognition. 
More recent studies propose more generic and advanced models, even if they are also 
carried out for a specific use (analyses of video sequences [16] or automatic genera-
tion [17], [18]). 

Most of the time, the proposed models are limited by the constraints due to the  
application (capture in recognition and animation control in generation). Our study 
tries to go one step further in the modelling of specific SL structures, like iconicity, 
use of space and simultaneity of information independently of any application. 

3   Semantico-Cognitive Formalisation 

In SL, the gestures are performed in a significant way, in a space represented by a 
half-sphere located in front of the signer. This space makes it possible to represent the 
whole set of semantic relations between various entities in a relevant and structured 
way. These relations can be locative, temporal, or relating the different participants in 
an action. Via various mechanisms (gaze, pointing, modification of the location of 
lexical signs...), it is possible to build virtual spatial references (or loci). In general, 
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the entities are not in relation directly, but via these virtual locations. Thus, we have a 
spatial structuring of the signing space, by means of various locations that can be 
associated to the entities by using specific configurations, named “proforms” [1]. 

Our aim is to model the semantico-cognitive processes underlying this type of ut-
terance elaboration. This modelling is based on the formal model elaborated in [19] 
and applied for the FSL in [18]. In his thesis, F. Lejeune proposes a set of semantico-
cognitive representations specific to the FSL. One of these representations relates to 
the spatialised semantic relations, like in “the cat is in the car”, or even in more ab-
stract utterances like in “Several disciplines, such as linguistics, psychology, sociol-
ogy, belong to human sciences”. 

In this paper, we will use the example “the cat is in the car” to introduce the formal 
and computational models. This utterance is composed of: 

- lexical signs of FSL designing entities, noted [sign]LSF (figure 1a and 1c), 
- proforms allowing to spatialise the entities, noted PF(sign) (figure 1b and 1d). The 

way these proforms are spatialised shows the spatialised relation between the enti-
ties (figure 1d), 

- and also gaze, which is used to “instantiate” a locus in the signing space and which 
is realised just before performing a proform (just before the images 1b and 1d). 
 

    

Fig. 1.       a. [car]LSF                 b. PF(car)                    c. [cat]LSF            d. PF(car)+PF(cat) 

The model is based on the description of salient "situations" from a visual percep-
tion point of view. These situations are formalised using semantico-cognitive primi-
tives, which can be properties of the entities, operators and relations between various 
types of entities.  

Semantico-cognitive Type. The entities are typed from a semantico-cognitive point 
of view. Table 1 lists some of these elementary types. 

Table 1. Examples of entity type 

Entity types Examples 
Individualisable cat, car 
Location Ile de Berder 
Collective the people 
Massive water, butter 
Activity work 
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This type is not static: The situation context can imply a change of type. For exam-
ple, when an entity E1 is positioned in the signing space using a proform, in order to 
be used thereafter as landmark for another entity E2, the E1 type takes the ‘Location’ 
value, whatever was its type at the beginning.  

In our example, the type of the entities Car and Cat normally is ‘Individualisable’. 
But in the situation “the cat is in the car”, Car takes the ‘Location’ type, because it is 
used as a landmark for Cat. 

Operators. Operators are used to specify or change an entity property, or to structure 
the signing space, by creating and specify particular locations. 

Some operators can be used to change an entity type. In our example, one of these 
operators is used to attribute the ‘Location’ type to the Car entity, whose initial type 
is ‘Individualisable’. This is represented by the expression 

LOC(car). 

The proforms, not only characterise an entity among several ones, but also pro-
vide a particular point of view on this entity, salient in the context of the relation. 
Thus, the determination of the proforms is not trivial. It will depend in part- 
icular on:  

- semantico-cognitive type of the entities. For example, some configurations, rather 
“neutrals” such as the configuration ‘flat hand, spread fingers’, are often used to 
represent massive entities (for example water in "it plunges in the water") or col-
lective entities (for example "a queue of standing persons").  

- context of use. For example, if one is interested in the interiority of the landmark, 
the proform used for referring to this entity will be based on a concave configura-
tion, like the ‘C’ configuration used in the proform in Figure 1 image b.  

The ‘DET’ operator is used to characterise a salient property of an entity. This op-
eration can be seen as an operation of determination. ‘DET’ is formally characterised 
by a given proform, or at least a small subset of proforms.  

In our example, the cat is specified as an entity located in relation to the car loca-
tion by the way of a ‘X’ configuration. In the formalism, this determination is repre-
sented by the expression  

DET(cat).  

The proform retains a salient feature of an entity locating in relation to a landmark. 
The Car entity is determined as a landmark entity of ‘Location’ type. In our formal-
ism, this determination is represented by the expression  

DET(LOC(car)).  

The proform retains a salient feature of an entity as a landmark. In a generic way, 
the expression  

DET(x) 

defines a proform which retains a salient feature of an entity x that depends on its 
type. 
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It is then possible to specify a little more this determination, by using operators of 
topological nature. Topology intervenes in linguistics to represent concepts of locat-
ing and topological determination. It is defined on abstract locations that transcend the 
categories of space, time, activities, modalities and notions. For a given location en-
tity, whatever its nature, topological operators are used to specify its interiority (IN), 
exteriority (EX), border (FR) and globality (FE). These operators can apply only to 
entities with a ‘Location’ type that will thus be more specified. In our example, one 
can specify that we are interested by the inside of the car. That is represented by the 
expression  

IN(DET(LOC(car))).  

Table 2. The four linguistic operations in the sentence “the cat is in the car” 

Linguistic operation Gesture unit Formalisation 

1: Lexical sign (that will be 
used later as Landmark) 

Car        Type: Individualisable 

2: Activation of a location loc1 
in the signing spaceby means of 
the gaze, chosen by the enun-
ciator in relation to the state-
ment situation (Sit(S0,T0))  
Specification of a relevant 
property of the landmark and 
localisation of this proform in 
the signing space 

Car      Type: Location 
            Role: landmark 
            Point of view: container 
            Proform: C  

Locus1 = REG(loc1) &  
loc1 REP Sit (So, To) 
IN(DET(LOC(car))) REP loc1 

3: Lexical sign (that will be 
used later as Localised entity) 

Cat      Type: Individualisable 

4: Activation of a location in 
the signing space (loc2 = inside 
loc1), specification of a rele-
vant property of the localised 
entity and elaboration of the 
inclusion relation 

Cat     Role: located 
           Proform: X  

Locus2 = REG(loc2) & 
loc2 = IN(loc1) & 
DET(cat) REP IN(DET(LOC(car))) 
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In a generic way, the expression  

IN(DET(x)) 

determines a proform which states that x is considered as a “container”. 

Relators. Relators are used in particular to express a property concerning two (or 
more) entities. The main one is the relator REP. The expression ‘x REP y’ means that 
the entity x is located in relation to y.  

In our example, we express that the Cat is located in relation to the inside of the car 
by using the expression  

DET(cat) REP IN(DET(LOC(car))). 

Other relators allow us to express the change from a situation to another, in state-
ments that express for example the displacement of an entity (ex: “the cat jumps in the 
car”), or the way in which an action is carried out (ex: “I put the cat in the car”). Let 
us note that in this case, the utterances will differ by the proform used or the move-
ment dynamics (this will not be developed in this article).  

Complete example. The use of the formalism to describe sentence structure is de-
tailed for each linguistic operation in the following table (Table 2). We list four main 
operations, each one containing one or more sub-operations.  

The Table 3 represents a scheme that synthesises our example representation. First 
row is used to describe the two entities (type, attribute), while second row describes 
the situation: an inclusion relation. 

Table 3. Specific LSF scheme for an inclusion relation 

1: Cat 
   Value: Individualisable 
   Role: located 
2: Car 
   Value: Location 
   Role: landmark 
   Point of view: container 

<DET(cat) REP (IN(DET(LOC(car))))> 

Those schemes are not universal since their organisation is specific to each lan-
guage. Nevertheless, for simple concepts, one can indeed find categories of generic 
schemes almost similar between languages. This kind of representations could be used 
as interlingua representations for application involving a SL and an oral language.  

The following scheme (Table 4) gives a generic representation of a situation of 
spatial relation between two entities. 

Table 4. Generic scheme for an inclusion relation 

x: Individualisable 
y: Location 

x REP y 
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The next section describes a first tentative to elaborate a computational modelling 
of this formalism for FSL. 

4   Computational Modelling 

The proposed computational modelling is build upon several knowledge bases, relat-
ing to the entities, their semantico-cognitive types and their proforms, to the spatial-
ised relations, and the various associated mechanisms. 

Its main features are synthetically introduced in a first section using the UML nota-
tion, which has the advantage of being able to express in a visual way the various 
concepts, their structuring, hierarchisation and the relations between these concepts. 
The classes (rectangle) represent the various concepts and the associations (lines 
between the rectangles) represent the relations or dependencies between these  
concepts. 

A second section illustrates how this modelling can be implemented for automatic 
generation of FSL utterances. 

4.1   Model 

To represent utterances expressing a spatialised relationship, one must model the 
spatial structure of the signing space, since entities are spatialised on chosen loca-
tions, and then, the properties of entities, proforms, semantico-cognitive type and 
relations brought into play. 

Signing Space. Generally, signing space structure is performed at a lexical level. This 
consists to provide a list of possible values of the parameters that define visually the 
lexical signs of the various countries [20] [21]. 

Other models, elaborated in studies on written forms of the SL [22][23], or on sign-
ing avatar animation [24][25], propose a more complex structuration, in order to im-
prove the precision of description. 

It still remains to elaborate models that integrate wider knowledge, in particular on 
the nature of the loci which structure space, their relations, overlapping, degree of 
accuracy and nature. An original point of view on a functional structure of the signing 
space is proposed in [16] [26] [27]. It allows the different loci to be specified in a 
given utterance regarding the functional role of the associated entities in the utterance, 
such as “person”, “action”, “date”… For our part, we have focused our study on the 
way loci are associated in a spatial relation between two entities. 

For example, in an utterance which describes an inclusion relationship between 
two entities, the location of the located entity, referenced using an adequate proform, 
is determined according to the location of the proform representing the landmark 
entity, so that the relation is visually not ambiguous. Moreover, it specifies the way in 
which relation is carried out (completely, partially...). This is here specification 
mechanisms of iconic nature which are carried out. 

In order to integrate such considerations in the model, it seems really necessary to 
refine the structuration of the signing space, and insert knowledge of higher level. In a 
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first step, we propose to differentiate the information related on the way the signing 
space is represented in the application, and the information related on the linguistic 
role of the loci. Thus, we define these two notion: 

- A Position refers to a location in the signing space, regarding a reference such as 
the signer location. It is described by a 3d point or a volume, depending on the 
way the signing space is segmented in the application.  

- A Locus represents a point of interest in the signing space, from the linguistic 
point of view. It is represented by a radius, symbolising a sphere: As an entity can 
have a volume being more or less extended in the signing space (ex: the sea), the 
radius allows to precise its range. A Locus can manage operators, such as the 
‘REG’ operator that is used to create or activate an instance of Locus. 

A Locus is associated to only one Position. On the contrary, a Position can be as-
sociated to several Loci, for example in the case of embedded entities.  

Schemes. As explained in section 3, the entities are typed with semantico-cognitive 
properties. The model integrates knowledge that makes it possible to assign, to mod-
ify and to specify the entity type. It also makes it possible to draw up a list of prefer-
ential proforms for each entity according to its type and to the nature of the semantic 
relation. It is illustrated using the simplified class diagram presented in Figure 2. 

The first concept is the Scheme, which represents the various possible schemes 
represented in this model, such as the one given in Table 3. It is described by the list 
of successive operators and relators (LOC, DET, IN, REP...) applied to the operands 
(the entities). Each scheme is associated to two or three entities according to the rela-
tion. In the case of a spatialised relation, each scheme will be associated to two  
entities. 

The Entity concept represents the entities handled in the utterance. Each entity is 
defined by its lexical sign. The sign description (by means of visual or physiologic 
properties) is not given, because it depends on the applications (generation, analysis, 
image processing, recognition...).  

The concept of Semantico-Cognitive Type (or SCType in Figure 2) corresponds 
to the various types quoted previously (in Table 1). For a given context, an associa-
tion (named typing in the diagram) will be established between a given Entity and a 
given SCType. When an Entity is activated, it receives a preferential SCType. Then, 
the context can impose a change of type. We use specific operators, such as LOC, to 
update this association when the entity changes its type. 

The Proform concept represent the various meaningful points of view associated 
to entities. Thus, each entity can be associated to several proforms. Conversely, a 
proform can be associated to several entities. One represents the relation between an 
Entity, a SCType and a Proform using a ternary association (named determination in 
the diagram). By the way of this association, if the type and the entity are known, one 
can determine the preferential proform or set of proforms used in the situation of the 
utterance. 

Complete Model. These two models (signing space and schemes) are connected by 
the intermediary of the entities and the loci. An Entity is associated to a given Locus 
at a given moment of the situation, and vice versa. 
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Fig. 2. Class diagram explaining the different concepts and their relations 

We want this model to be independent of the computational application considered. 
This kind of model could be implemented in the context of recognition [28] or analy-
sis systems [16] as a high control level, but this will not be described in this paper. 
The following section shows how it is used in an application which performs auto-
matic generation of simple FSL utterances. 

4.2   Automatic Generation of Utterance Description 

To illustrate the principles of our modelling, we have developed a first prototype [29] 
with the aim to automatically produce simple isolated utterances such as "the cat is in 
the car" without having to specify the proforms or pointing gestures used and their 
spatialisation in the signing space. 

The input is a triplet (entity1, relation, entity2), representing a spatialised relation 
relation between a localised entity entity1 and a landmark entity entity2. The output is 
the animated utterance performed by a signing avatar (see Figure 3). The application 
is based on three processes that are very quickly described in the following. 

1. In the first process, the scheme corresponding to the input is computed. This proc-
ess uses a knowledge base dedicated to the relations. Each relation is associated to 
one or more operators and the way the relation is performed, by using proforms or 
pointing gestures. The following lines show an example for the relation ‘in’: 

<relation nom="in"> 
  <localise val="prof"/> 
  <repere val="prof"/> 
  <op-rep> 
    <IN/> 
  </op-rep> 
</relation> 

2. In the second process, the sequence of gestural units corresponding to the scheme 
is computed. A set of instructions corresponding to the scheme operatos allows us 
to build the structure of the utterance (for the moment, only one structure is con-
sidered in the prototype), that is the list of gestural units composing the utterance. 
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For each gestural unit, a complete set of parameters must be computed (configura-
tion, orientation, location, movement, gaze, etc). The needed places are chosen in 
the signing space in order to complete the description of the gaze direction, point-
ing gesture direction and proform location. The other gesture parameters are ex-
tracts from two knowledge bases: 
- The first one is dedicated to the entities. For each entity, and for each possible 

semantico-cognitive type, a list of proforms and their possible realisations in 
space (orientations) is given. 

- The second one lists the constraints in the realisation of the proforms, depend-
ing on the relation. 

The whole description of the FSL utterance is stored in an XML file, with the dif-
ferent values for the different parameters. 

3. Finally, this file is applied to our animation tool, which produces an OpenGl win-
dow showing the animated avatar, by reading prerecorded files describing each 
gestural units. 

 

Fig. 3. Spatial relation between the cat and the car performed by the signing avatar 

5   Conclusion and Perspectives 

We describe in this paper a computational modelling of the formal model proposed in 
[18]. It is based on the modelling of signing space structure, with an emphasis on the 
concept of locus which are used to express the spatialised semantic relations, and also 
on the modelling of the relations, semantico-cognitive types, operators, entities and 
proforms as specified in the formal model. This model answers well our objective, 
which is to represent, independently of the application concerned, utterances express-
ing spatialised semantic relations between two entities.  

In order to evaluate the model relevance, we have implemented it within an appli-
cation of simple FSL utterance generation, performed by a signing avatar. These pro-
ductions will be submitted in the next steps by native signers to evaluate the model 
capacities.  

In the future, this model will have to be extended to make it possible to represent 
more complexe situation and successions of situations. It is also planned to integrate 
our model with the one proposed in [26] Thus, the proposition presented here is only 
a first step towards a more complete model. 



 Spatialised Semantic Relations in French Sign Language 47 

References 

1. Cuxac C.: La langue des signes française ; les voies de l’iconicité. In : Faits de Langues 
15/16, Ophrys Paris (2000). 

2. Sallandre M-A.: Les unités du discours en Langue des Signes Française. Tentative de ca-
tégorisation dans le cadre d'une grammaire de l'iconicité. PhD thesis, Paris 8 University, 
France (2003). 

3. Fusellier I.: Sémiogénèse des langues des signes. Étude des langues des signes primaires 
(LSP) pratiquées par des sourds brésiliens. PhD thesis, Paris 8 University, France (2004). 

4. B. Garcia 1998. Paul Jouison. Écrits sur la Langue des Signes Française (LSF). Harmattan 
(in french). 

5. Risler a.: Noms et verbes en langue des signes: Ancrage perceptif des catégories lexicales. 
In: Santi, Serge et al (eds): Oralité et gestualité. Communication multimodale, interaction. 
L'Harmattan Paris  (1998) 125-130 

6. Emmorey K.: Language, cognition and the brain : Insignts from sign language, Lawrence 
Erlbaum Associates (2001). 

7. Liddell S.: Grammar, gesture and meaning in American Sign Language. Cambridge Univ. 
Press, Cambridge (2003). 

8. Talmy, L.: The representation of Spatial Structure in Spoken ansd Signed Language. In: 
Emmorey, K. (ed), Perspectives on classifier constructions in sign language, Lawrence 
Erlbaum Associates (2003) 311-332. 

9. Suszczanska N. et al.: Translating Polish texts into Sign Language in the TGT system. In: 
20th IASTED Int. Multi-Conference (2002) 282-287. 

10. Zhao L., Kipper K., Schuler W., Vogler C., Badler N.: A Machine Translation System 
from English to American Sign Language. In: Association for Machine Translation in the 
Americas (2000). 

11. Speers d'A.L.: Representation of American Sign Language for Machine Translation. PhD 
Dissertation, Department of Linguistics, Georgetown University (2001). 

12. Safar E., Marshall I.: Sign language translation via DRT and HPSG. In : 3rd Int. Conf. On 
intelligent text processing and computational linguistics, LNCS 2276, Springer. (2002). 

13. Elliott R. et al : An overview of the SiGML Notation and SiGMLSigning Software Sys-
tem. In: Workshop on the Representation and Processing of Signed Languages, LREC 
2004, Portugal (2004). 

14. Huenerfauth M.. Spatial Representation of Classifier Predicates for Machine Translation 
into American Sign Language. In: Workshop on the Representation and Processing of 
Signed Languages, LREC 2004, Portugal (2004). 

15. Braffort A.: Reconnaissance et compréhension de gestes, application à la langue des si-
gnes. PhD thesis, Orsay University, France (1996). 

16. Lenseigne B.: Intégration de connaissances linguistiques dans un système de vision, appli-
cation à l’étude de la langue des signes. PhD thesis, Toulouse 3 University, France (2004). 

17. Lejeune F., Braffort A.: Study on Semantic Representations of French Sign Language Sen-
tences. In : Gesture and Sign Language based H-C Interaction, I. Wachsmuth & T. Sowa 
Eds, LNAI 2298 Springer (2002). 

18. Lejeune F.: Analyse sémantico-cognitive d’énoncés en Langue des Signes Française pour 
une génération automatique de séquences gestuelles. PhD thesis, Orsay University, France 
(2004). 

19. Desclés J.-P. : Les prépositions, relateurs ou opérateurs de repérage. In: Colloque les rela-
tions, Lille 3 University (1998). 

20. Moody B.: La Langue des signes française, Tomes 1, 2 et 3,. IVT Paris 1998. 



48 A. Braffort and F. Lejeune 

21. Crasborn O., Van der Hulst H., Van der Kooij E.: SignPhon: A phonological database fir 
sign languages. In: Sign Language and Linguistics, vol. 4 n°1, John Benjamins Pub. 
(2002) 215-228. 

22. Prillwitz S. et al : HamNoSys version 2.0 ; HamburgNotation System for Sign Languages. 
An introduction guide. In: International Studies on Sign Languages and Communication of 
the deaf 5. Hamburg Signum (1989). 

23. www.signwriting.org 
24. Lebourque T. 1998. Spécification et génération de gestes naturels. Application à la Langue 

des Signes Française. PhD thesis Orsay University, France (in french). 
25. Losson O. 2000. Modélisation du geste communicatif et réalisation d’un signeur virtuel de 

phrases en langue des signes française. PhD thesis, Lille 1 University, France (in french). 
26. Lenseigne B. & Dalle P.: Using Signing Space as a Representation for Sign Language 

Processing. In: The 6th International Workshop on Gesture in Human-Computer Interac-
tion and Simulation, France (2005). 

27. Lenseigne B. & Dalle P.: Modélisation de l’espace discursif pour l’analyse de la langue 
des signes. In : Workshop on Traitement Automatique des Langues des Signes, TALN 
2005, France (2005). 

28. Bossard B. Braffort A. Jardino M.: Some issues in Sign Language processing. In: Gesture-
based communication in human-computer interactopn, LNAI 2915, Springer (2004). 

29. Braffort A. Bossard B. Segouat J. Bolot L. & Lejeune F.: Modélisation des relations spa-
tiales en langue des signes française. In : Workshop on Traitement Automatique des Lan-
gues des Signes, TALN 2005, France (2005). 



Automatic Generation of German Sign
Language Glosses from German Words

Jan Bungeroth and Hermann Ney

Lehrstuhl für Informatik VI, Computer Science Department,
RWTH Aachen University, D-52056 Aachen, Germany

{bungeroth, ney}@informatik.rwth-aachen.de

Abstract. In our paper we present a method for the automatic genera-
tion of single German Sign Language glosses from German words. Glosses
are often used as a textual description of signs when transcribing Sign
Language video data. For a machine translation system from German to
German Sign Language we apply glosses as an intermediate notational
system. Then the automatic generation from given German words is pre-
sented. This novel approach takes the orthographic similarities between
glosses and written words into account. The obtained experimental re-
sults show the feasibility of our methods for word classes like adverbs,
adjectives and verbs with up to 80% correctly generated glosses.

1 Introduction

In the field of automatic translation, significant progress has been made by using
statistical methods. This was successfully applied to many language pairs where
large amounts of data are available in the form of bilingual corpora. Using statis-
tical machine translation (SMT) for Sign Languages would require such corpora
too. Unfortunately only few data is available.

Addressing this data scarceness by using glosses as an intermediate Sign Lan-
guage notation, we provide a new approach to a Sign Language translation sys-
tem. The method presented in our paper is the first to examine the automatic
generation of glosses for German Sign Language (DGS) from German words. It
makes use of German base forms and a small bilingual corpus. We show how the
glosses are generated and give results for the different word classes. Our results
will show which word classes (e.g. adverbs) perform better than others.

2 Notation

For storing and processing Sign Language, a textual representation of the signs
is needed. While there are several notation systems covering different linguistic
aspects, we focus on the so called gloss notation. Glosses are widely used for
transcribing Sign Language video sequences.

In our work, a gloss is a word describing the content of a sign written with
capital letters. Additional markings are used for representing the facial expres-
sions. Unfortunately, no standard convention for glosses has been defined yet.

S. Gibet, N. Courty, and J.-F. Kamp (Eds.): GW 2005, LNAI 3881, pp. 49–52, 2006.
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Table 1. Example glosses for DGS signs and their English translations

neg

SITZEN GELD+MÜNZEN X-location
not sitting money coins reference to the location X

Furthermore, the manual annotation of Sign Language videos is a difficult task,
so notation variations within one corpus are often a common problem.

In this work, the gloss notation basically follows the definitions as used in
[1]. Additionally, compound nouns are separated with a plus if they are signed
separately, and references to locations in signing space, signed with the hands,
are given as an X with the location name.

Table 1 shows example glosses representing DGS signs. The glosses, retrieved
from DGS video sequences, are given with their English translation.

3 Translation System

A complete Sign Language translation system, capable of generating Sign Lan-
guage output from spoken input and for generated speech from recognized Sign
Language, was proposed in [2].

The system propagates the use of a gloss notation for the corpus-based learn-
ing mechanisms. The input sentence (e.g. German) will be translated into glosses
which are reordered according to the Sign Language grammar (e.g. DGS gram-
mar). The corresponding animation performed by an avatar, that is a virtual
signer, can be looked up in lexicons. Unknown glosses are still useful, as they
can be finger-spelled.

4 Corpus

Bilingual Sign Language corpora are still rare, as the consistent annotation of
videos is difficult. The available corpora are limited to a few hundred sentences,
often taken from different domains. The European Cultural Heritage Online
(ECHO) project [3] hosts a number of well annotated, small corpora from various
Sign Languages like Swedish Sign Language (SSL), Dutch Sign Language (NGT)
and British Sign Language (BSL). Furthermore, ECHO also published guidelines
for annotation [4] and suitable software.

For our experiments we rely on a bilingual corpus, from the DESIRE team [5]
for DGS and German consisting of 1399 sentences after pre-processing. Table 2
shows the corpus statistics where singletons are words occurring only once. Due

Table 2. DESIRE corpus statistics

DGS German
no. of sentence pairs 1399
no. of running words 5480 8888
no. of distinct words 2531 2081
no. of singleton words 1887 1379
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to the high number of singletons, this corpus is unsuitable for the immediate
training in a SMT system.

Unfortunately, several sentences in the corpus use inconsistent annotation.
Also some notations had to be changed. The altered notation will be used for
testing the generated glosses later.

5 Gloss Generation

Obtaining a DGS gloss from a given German word is possible because the nota-
tion of the DGS sign is described with one or more German words. This similarity
is also dependent on the semantic context of the DGS sentence and it’s grammar.
We can therefore expect words from some word classes to be generated better
than those of others classes. Thus analyzing the word class of the German word
is one basic idea of gloss generation.

For this analysis we rely on the commercially available analyzer by Ling-
soft1. It writes the corresponding morpho-syntactical information of a German
sentence to a file.

As an example, we look at the German sentence “Ich mag keine Nudeln.”
(I don’t like noodles.). First we extract the base forms and process them for
obtaining gloss-like words. That is, special symbols are removed and the obtained
words are capitalized. Here, the resulting glosses would be: ICH, MÖGEN, KEIN,
NUDEL. We then extract the word classes from this output. In this example that
is pronoun (PRON), verb (V), determiner (DET) and noun (S). Note that an
ambiguous word can have different interpretations.

Table 3 shows a further example sentence, where the German words are trans-
formed to glosses.

Table 3. Example gloss generation

German Ich kaufe heute ein neues Auto.
German base forms ich kaufen heute ein neu Auto
Correct glosses ICH KAUFEN HEUTE NEU AUTO
Correct DGS HEUTE NEU AUTO KAUFEN
English Today I buy a new car.

6 Results

For our experiments we extracted all the base forms of the German sentences
in the DESIRE corpus. From these we generated the glosses using the methods
described above. The resulting glosses were then compared with the DGS lexicon
extracted from the DGS part of the corpus. All generated words were sorted
according to their extracted base form. As mentioned in the last section about
preprocessing, markings were handled as separate words.

With no further pre-processing we already achieved 55.7% correct matches
overall. When looking at the distinct word classes different matching rates were
1 http://www.lingsoft.fi
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Table 4. Automatic gloss generation for different word categories

NOUNS VERBS ADJ ADV PREP PRON CONJ ART
no. of running words 940 924 304 321 248 598 67 275
no. of distinct words 710 210 135 61 35 30 11 10
correct glosses [in %] 52.1 67.1 72.6 81.0 48.6 46.7 0.0 0.0

found. Especially adverbs, adjectives and verbs could be generated easily and
with a high compliance. Nouns were only generated correctly below average
(52.1%). This is explained by a high number of compound nouns that are con-
catenated differently in DGS than in German. Also synonymous nouns are often
used for the DGS transcription, so the generated gloss might be correct but not
part of the lexicon. Further investigation on different corpora is necessary for
noun generation.

On the other hand, the lack of conjunctions and articles is no surprise as
words from these categories are rarely or even never used by signers in DGS.
Preposition and pronouns should be handled with care, as those are often used
in German, but in DGS they are often substituted by classifier predicates.

7 Summary and Outlook

We described how to generate single Sign Language glosses from given words.
This method will be embedded into a complete translation system as described
in this paper. The necessary corpus preparation was introduced as well as an
overview of the gloss notation.

The generation process itself, where glosses are derived from the base form
words, will assist the translation system. From the observed results we conclude
to introduce automatic gloss generation for adjectives, adverbs and verbs. It
should be possible to alter nouns during preprocessing for obtaining better results
on this word class too. This will be addressed on other corpora as our next step
towards automatic Sign Language translation.
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Abstract. In this paper, we propose an approach for the representation
of the relationship between verbs and actors in French Sign Language.
This proposal comes from the results of an experiment conducted in
the France Télécom R&D’s Natural Language laboratory using TiLT
(Linguistic Treatment of Texts), an automatic syntactic analyser and
generator. The aim of this approach is to develop a model that will be
used to animate an avatar through a previous computational linguistics
treatment, respecting French Sign Language as a proper human language.

Keywords: French Sign Language, verb typology, morphology, nominal
classes, agreement, computational sciences.

1 Introduction

The present document describes the result of an experiment carried out as a
collaborative work between France Télécom R&D’s Natural Language laboratory
and the DELIC (DEscription LInguistique sur Corpus: corpus-based linguistic
description) team of Provence University. The main purpose of this experiment
was to confirm that French Sign Language (FSL) could be computer-processed
by adapting at a small cost a system originally developed for written and spoken
languages, namely the TiLT syntactic analyser and generator, which is already
operational for a number of languages such as French, German, English and
Arabic. The problem tackled the representation of verbs and their arguments in
the computational system, and the corresponding agreement.

2 Morphological Description of Verbs

Our machine representation is based on a typology that classifies verbs according
to the way their morphology varies with inflexion, using affixes. We distinguish
three types of affixes: prefix, suffix and transfix. Those terms must be un-
derstood through the usual way flexional languages build their flexions using
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affixes in order to describe syntactic relations. But they also must be under-
stood through the specific way sign languages use space in order to realize the
signed sentence. For instance the prefix of the verb refers to the place where
the movement starts, the suffix refers to where the movement ends. Prefixes and
suffixes as places are named ”loci”, a term used by A. Vercaigne-Ménard and
D. Pinsonneault [1]. A locus is a subset of the space referring to an element of
the discourse formerly associated with this place or, if not formerly specified,
referring to conventional pronouns. The transfix is a term corresponding to an-
other specificity of sign language which can superpose elements. For instance,
the transfix is realized at all times during the articulation of the verb, prefix and
suffix included. In other words, a transfix affects the verb in such a way that
the verb ”takes its appearance”. In verbal morphology, the transfix is always a
gesture profom. ”Gesture proforms” (see Slobin [2]) have long been called ”clas-
sifiers”. But on a purely syntactic point of view, proforms are manipulated like
pronouns, referring to objects (or persons) already enunciated in the discourse.
Furthermore, proform is specific in linguistics since it can be adapted in function
of the objects to which it refers (see Cuxac [3]). Figure 1 shows an example of
the relation between verb an noun, in the which:

– [give] and [glass] are the word roots
– ”I Locus” is the place where the verb begins (the body of the hearer)
– ”you Locus” is the place where the verb finishes (where the co-speaker

stands)
– ”C Proforme” is the gesture proform referring to the glass, by which the

verb is realized.

In our dictionary each noun is associated to a list of gesture proforms. The
list comes from the systematic observation of the realization of verbs by signing

Fig. 1. ”I give you a glass”
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deaf people. The agreement matches if a gesture proform is licensed by the verb
through a transfix. In our example, one of the gesture proforms of [glass] is ”c”
and [give] licenses ”c” to be constructed. As several proforms may be associated
to nouns and verbs, the system will have to use information given by contextual
entries required to build the semantic graph.

This was an example of verbs whose morphology varies with the three affixes.
In that case, the first locus refers to the subject, the second to the oblique and the
transfix to the object. Thus this verb admits an agreement with three arguments:
subject, oblique and object. Let us see some other types of agreement:

– [dream] does not vary even if it has arguments (at least a subject, and an
object)

[he] [dreamed] (he was in Paris)1 He dreamed (he was in Paris)

As the verb does not specify the subject through its morphology, [he] has to be
articulated as an independent gesture.

– [tell] only varies in subject and oblique:

I-[tell]-you (he is gone) I tell you (that he is gone)

Some verbs have a morphology that varies with prefixes and suffixes, but whose
loci refer to locations:

– [take the plane] varies in locations, the other arguments being independent:

[Paris](on locA) [L.A.](on locB) [you] locA-[take the plane]-locB
you take the plane from Paris to L.A.

3 Codification for Computational Treatment

Each verb is associated to a morphological code ”V ” followed by three letters
representing the morphological variations with affixes in the following order:
prefix, suffix and transfix.

Each letter encodes the morphological variation with:

locus L
gesture proform P
nothing (invariant) X

For instance,

– ”to dream” is encoded V XXX since it doesn’t vary
– ”to tell” is encoded V LLX since its prefix and suffix both vary
– ”to give” is encoded V LLP since its prefix, suffix and transfix all vary

1 The part in parentheses and italic is not treated since it does not belong to the
demonstration.
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The inflectional model for verbs combines the different forms of its various affixes:

Table 1. Variations for [give]

lemma prefix postfix transfixe
V-LLC Locus Locus Proform
give I I c

you you o
he he open duckbill
Pointer Pointer closed duckbill

clamp
open clamp
. . .

4 Conclusion

On the basis of the representations we have defined, which rely on a typology
of verbs and nominal classes, the TiLT syntactic parser is able to build gram-
matical dependency trees for FSL. So far, our study seems to indicate that a
slight adaptation of existing tools, provided that they are based on adequate
sign language description, is sufficient to carry out some aspects of computer
processing.

Furthermore, this representation of the verbs and the way they are constructed
with affixes is a good way to think of the link between the syntactic module and
an avatar. Indeed, this codification gives in itself some indications on interrelating
places and movements within the grammatical space of elocution.
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Abstract. In Sign Language recognition, one of the problems is to collect enough 
data. Data collection for both training and testing is a laborious but necessary 
step. Almost all of the statistical methods used in Sign Language Recognition 
suffer from this problem. Inspired by the crossover and mutation of genetic 
algorithms, this paper presents a method to enlarge Chinese Sign language 
database through re-sampling from existing sign samples. Two initial samples of 
the same sign are regarded as parents. They can reproduce their children by 
crossover. To verify the effectiveness of the proposed method, some experiments 
are carried out on a vocabulary with 350 static signs. Each sign has 4 samples. 
Three samples are used to be the original generation. These three original 
samples and their offspring are used to construct the training set, and the 
remaining sample is used for testing. The experimental results show that the data 
generated by the proposed method are effective.  

1   Introduction 

Hand gesture recognition, which contributes to a natural man-machine interface, is 
still a challenging problem. Closely related to the realm of gesture recognition is that 
of sign language recognition. Sign language is one of the most natural means of 
exchanging information for the hearing impaired people. It is a kind of visual 
language via hand and arm movements accompanying facial expression and lip 
motion. The aim of sign language recognition is to provide an efficient and accurate 
mechanism to translate sign language into text or speech.  

The reports about gesture recognition began to appear at the end of 80’s. T.Starner 
[1] achieved a correct rate of 91.3% for 40 signs based on the image. By imposing a 
strict grammar on this system, the accuracy rates in excess of 99% were possible with 
real-time performance. Fels and Hinton [2][3] developed a system using a VPL 
DataGlove Mark II with a Polhemus tracker as input devices. Neural network was 
employed for classifying hand gestures. Y. Nam and K.Y. Wohn [4] used 
three–dimensional data as input to Hidden Markov Models (HMMs) for continuous 
recognition of a very small set of gestures. R.H.Liang and M. Ouhyoung [5] used 
HMM for continuous recognition of Tainwan Sign language with a vocabulary 
between 71 and 250 signs by using Dataglove as input devices. HMMs were also 
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adopted by Kisti Grobel and Marcell Assan to recognize isolated signs collected from 
video recordings of signers wearing colored gloves, and 91.3% accuracy out of a 
262-sign vocabulary was reported [6]. C.Vogler and D.Metaxas [7] described an 
approach to continuous, whole-sentence ASL recognition, in which phonemes instead 
of whole signs were used as the basic units. They experimented with 22 words and 
achieved similar recognition rates with phoneme-based and word-based approaches. 
Wen Gao[8] proposed a Chinese Sign language recognition system with a vocabulary 
of 1064 signs. The recognition accuracy is about 93.2%. C. Wang [9] realized a 
Chinese Sign Language (CSL) recognition system with a vocabulary of 5100 signs.  

For signer-independent recognition, Vamplew [10] reported the SLARTI sign 
language recognition system with an accuracy of around 94% on the signers used in 
training, and about 85% for other signers. It used a modular architecture consisting of 
multiple feature-recognition neural networks and a nearest-neighbor classifier to 
recognize 52 Australian sign language hand gestures. All of the feature-extraction 
networks were trained on examples gathered from 4 signers, and tested on both fresh 
examples from the same signers and examples from 3 other signers. Akyol and 
Canzler [11] proposed an information terminal that can recognize 16 signs of German 
Sign Language from video sequences. 7 persons were taken for training the HMMs 
and the other three for testing. The recognition rate is 94%.  

Up to now, one of the problems in Sign Language recognition is to collect enough 
data. Data collection for both training and testing is a laborious but necessary step. 
Almost all of the statistical methods used in Sign Language Recognition suffer from 
this problem. However, sign language data cannot be gotten as easily as speech data. 
We must invite the special persons to perform the signs. The lack of the data makes 
the research, especially the large vocabulary signer-independent recognition, very 
difficult. In face detection and recognition field, researchers employ some methods to 
generate new samples to swell the face database [12]. This paper focuses on this 
problem. Re-sampling is presented to enlarge the sign language database. Inspired by 
genetic algorithms, the ideas of crossover and mutation are used to generate more 
samples from existing ones. Each sign is composed of limited types of components, 
such as hand shape, position and orientation, which are independent of each other. 
Two initial samples of the same sign cross at one and only one component to generate 
two children. 

The rest of this paper is organized as follows. In Sect. 2, the re-sampling method 
based on genetic algorithms is proposed. In Sect. 3, the experimental results are 
reported. Finally in Sect. 4, we give the conclusions. 

2   Sign Re-sampling 

In order to get more training data, we can generate new samples from the existing 
ones. The ideas of genetic algorithms, namely crossover and mutation, can be 
employed.  

2.1    Representing a Sign  

Two CyberGlove and a Pohelmus 3-D tracker with three receivers positioned on the 
wrist of CyberGlove and the back are used as input device in this system. The input 
equipments are shown in Fig. 1.  
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Fig. 1. The Dataglove and the 3-D tracker used in our system. Three receivers are fixed on two 
hands and the back respectively.  

Each sample of a sign is a sequence of frames. The number of frames is from 10 to 
20. One frame of raw gesture data, which in our system are obtained from 36 sensors 
on two datagloves, and three receivers mounted on the datagloves and the body, are 
formed as 48-dimensional vector. An algorithm based on geometrical analysis for the 
purpose of extracting invariant feature to signer position is employed [9]. Each 
element value is normalized to ensure its range 0-1.  

Each hand is represented by 24 dimensions data. 18 dimensions data represent the 
hand shape, 3 dimensions data represent the position of hand, and 3 dimensions data 
represent the orientation of hand. We can split up one sign into a number of channels. 
Each channel can be considered as a gene of the sign. Inspired by the genetic 
algorithms, crossover and mutation can be used to generate new samples of the sign. 
Intuitively, we may adopt the following four splitting strategies. 

1. S = {Left Hand, Right Hand}, Channel Number = 2.  
2. S = {Position&Orientation, Left Hand Shape, Right Hand Shape}, Channel 

Number = 3. 
3. S = {Left Position&Orientation, Left Hand Shape, Right Position&Orient- 

ation, Right Hand Shape}, Channel Number = 4.  
4. S = {Left Position, Left Orientation, Left Hand Shape, Right Position, Right 

Orientation, Right Hand Shape}, Channel Number = 6.  

In the following we address how to generate new samples in detail according to the 
Strategy-2. The procedures according to other strategies are similar. In Sect. 4, the 
performances of these four splitting strategies are evaluated. 

2.2   Generating New Samples  

Genetic algorithms take their analogy from nature. Two initial samples of the same 
sign are regarded as parents. They can reproduce their children by crossover and 
mutation.  
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Each sign is composed of limited types of components, such as hand shape, position 
and orientation. We can split up one sample into three channels, namely Position & 
Orientation (P&O), Left Hand Shape (LH), and Right Hand Shape (RH). These three 
parts of the same sign in different samples may be variable. One sample gives one 
demonstration of each part. There are two samples of “Australia” shown in Fig. 2.  

   

Fig. 2. Two samples of the sign “Australia”. The hand shapes, positions and orientations of 
these two samples are different. 

S1 and S2 denote these two samples of the same sign “Australia”. S1 = {P&O1, LH1, 
RH1}, S2 = {P&O2, LH2, RH2}. The hand shape, orientation and position of the first 
sample are different from that of the second one. All of them are correct for this sign. 
So a gesture with the position & orientation of the first sample and the hand shape of 
the second one, namely S = {P&O1, LH2, RH2}, is a possible sample of the sign but is 
different from S1 and S2. 

So the new sample S may not match the model well and may not be recognized 
correctly. If we re-combine these parts from different samples, the model trained by 
them can have better generalization performance.  

Two samples of the same sign are picked up from the initial training set randomly. 
Each sample is a sequence of frames. In order to cross, the length of Parent2 should 
be warped to that of Parent1. Each frame is divided into three parts: position & 
orientation, left hand shape and right hand shape. Every pair of parent crosses at one 
and only one part, that is, all frames of the parent cross over at the same part. The 
parent can cross three times and each crossover operator can generate two children, so 
two samples can generate 6 new samples. The process of crossover is shown in Fig. 3.  

During the simulation process, the signs are also mutated. When two parents cross, 
the part from Parent2 is mutated randomly within the limited scale. The variety range 
can be learned from the training set. The variance in each dimension is calculated 
from all the frames of all the samples and is used to control the extent of mutation. 
Besides, the description of signs in dictionary is referenced, too. For example, if the 
hand shapes of one sign are very important, the mutation can cover the variations in 
position and orientation. Because we do not design an evaluation function to judge the 
fitness of a new sample, the mutation is limited to a small range. So the mutation 
operator has less effect on the results than crossover operator.  
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Fig. 3. Crossover operator during the re-sampling. Each frame is broken down into three 
independent parts. During a crossover, one and only one part is exchanged. All frames of the 
parent cross over at the same part. 

To verify the effects of the proposed method, we compare it with Parallel HMMs 
(PaHMMs).   

2.3   PaHMMs  

As mentioned in Sect 2.1, if the data of the channel 1 of a test sample are similar to a 
training sample of the same sign, while the data of channel 2 are similar to another 
training one, the test sample may be different from all the training samples and is 
probably recognized as another sign. To verify the effects of the above method, we 
assume the other methods that can resolve this situation. Christian Vogler [13] 
proposed a framework of PaHMMs, which builds a model for each channel 
respectively and can probably resolve this problem.  

Corresponding to the four strategies given in Sect. 2.1, we design 4 kinds of 
PaHMMs as follows: 

1. PaHMM-CN2 models 2 channels with 2 independent HMMs. The two channels 
are: Left Hand and Right Hand. 

2. PaHMM-CN3 models 3 channels with 3 independent HMMs. The three chan- 
nels are: Position&Orientation, Left Hand Shape, and Right Hand Shape. 

3. PaHMM-CN4 models 4 channels with 4 independent HMMs. The four channels 
are: Left Position&Orientation, Left Hand Shape, Right Position&Orientation, 
and Right Hand Shape. 

4. PaHMM-CN6 models 6 channels with 6 independent HMMs. The six channels 
are: Left Position, Left Orientation, Left Hand Shape, Right Position, Right 
Orientation, and Right Hand Shape. 

The PaHMM-CN3 is given in Fig. 4. The others are similar. 

Frame of Parent1 

{P&O1, LH1, RH1,} 

Frame of Parent2 

{P&O2, LH2, RH2,} 

P&O LH RH 

Children 

{ P&O2, LH1, RH1,} 

{ P&O1, LH2, RH2,} 

Children 

{ P&O1, LH2, RH1,} 

{ P&O2, LH1, RH2,} 

Children 

{ P&O1, LH1, RH2,} 

{ P&O2, LH2, RH1,} 
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Fig. 4. PaHMMs with 3 independent channels 

In Sect. 4, the performances of these four kinds of PaHMMs are evaluated and the 
comparisons between the results of PaHMMs and HMMs trained by generated 
samples are reported. 
 

 

Fig. 5. Overview of the recognition system combining the proposed sign re-sampling method 
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2.4   Overview of the Recognition System 

The framework of the recognition system combining the proposed sign re-sampling 
method is shown in Fig. 5. Firstly, the input data are preprocessed. The sign data 
collected by the gesture-input devices is fed into the feature extraction module, and 
then normalized. The dataset contains a small number of samples, that is, 4 samples 
for each sign. One sample of each sign is employed as the testing one. The others are 
used as the initial population to perform the GA operations. The initial samples and 
their children are utilized to train the HMMs. Because the number of training samples 
increases, the training time will increase. But the training time is seldom considered.  
The recognition time and accuracy of a system are more important. Viterbi is used in 
our system. The recognition process is the same as the regular one. The computational 
complexity of the decoding algorithm and the recognition time do not change. 

3   Experiments 

To verify the generalization capability of the proposed method, some experiments are 
performed. In order to make it simple to warp two sequences, we carry out 
experiments based on a vocabulary with 350 static signs, in which the hand shape, 
position and orientation change slightly. These signs are captured by the same signer. 
We invite a deaf signer to collect data for us. Each sign has 4 samples. The traditional 
leave-one-out cross-validation is employed. Three samples are used to construct the 
original training data, and the remaining one is used for testing. So there are four 
groups of training sets and test samples. The numbers of generated samples according 
to different strategies are shown in Table 1.  

Table 1. The Numbers of Samples According to Different Strategies 

 Original Strategy-1 Strategy-2 Strategy-3 Strategy-4 

New 
Samples 

0 6 18 30 42 

Training 
Samples 

3 9 21 33 45 

 

HMMs are trained based on different training sets. In our system, HMM is 
left-to-right model allowing possible skips. The number of states is set to be 3, and the 
number of mixture components is set to be 2. We fix the values of variances of 
covariance matrix. The variances of the feature data in the dimensions representing 
Position and Orientation are set to be 0.2 and those in the dimensions representing 
Hand Shape are set to be 0.1. These above values are obtained by experiments.  

The recognition results according to different strategies are shown in Fig. 6. From 
Fig. 6, it can be seen that the results according to any strategy are better than those 
based on the original training data. Generating new samples improves the accuracy.   
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Fig. 6. Comparison of the recognition results based on the original training data and the 
generated training data according to different strategies. Leave-one-out cross-validation is 
employed.  

The accuracy of the first group is lower than those of the others. The possible 
reasons are as follows. The test data in this group were collected for the first time. 
The signer was not very accustomed to perform gestures with unwieldy dataglove and 
tracker on body. Some signs are not up to the standard. Besides, when we collected 
data for the first time, some details of the input devices, such as the effective range of 
the tracker, are neglected. The data are somewhat affected.  

Table 2 gives the average recognition rates of above 5 methods.  

Table 2. The average recognition rates based on the original training set and four splitting 
strategies 

Training Set Original Strategy-1 Strategy-2 Strategy-3 Strategy-4 

Average 
Accuracy 94.00% 94.57% 95.21% 95.07% 94.78% 

 
The average accuracy based on the original training data is 94%. Strategy-2 

achieves the best accuracy of 95.21%. According to the relative accuracy 
improvement computing formula (1): 

2

21

1 λ
λλλ

−
−

=Δ                                                         (1) 
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Table 3. The average recognition rates of HMMs trained by generated samples and PaHMMs 
with different channel number 

Model CN =2 CN =3 CN =4 CN =6 

HMMs 94.57% 95.21% 95.07% 94.78% 

PaHMMs 94.10% 94.36% 94.71% 94.57% 
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Fig. 7. The comparisons between HMMs trained by generated training sets and PaHMMs with 
different channel number based on cross-validation tests 

The relative accuracy improvement of 20% is achieved. This result is very 
encouraging. The experimental results show that the data generated by the proposed 
method are effective.  

The possible reasons for the above results are as follows. The generated new 
samples may be different from the original training samples but similar to the 
unknown test sample. So by this method, the system can get better generalization 
performance with the limited training data. According to Strategy-1, only few new 
samples are generated, which are not enough yet. So the improvement is limited. 
According to Strategy-4, the position and orientation are considered as different 
channels. But they are not absolutely independent from each other, so the crossover 
operator may generate unreasonable samples.  
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To verify the effects of the re-sampling method, we carry out some experiments on 
PaHMMs. Table 3 summarizes the average accuracies of HMMs trained by generated 
samples and PaHMMs with different channel number. 

It can be seen that generating new samples may achieve better accuracy than 
PaHMMs. The recognition rates on cross-validation tests based on different channel 
number are given in Fig. 7. 

4   Conclusions and Future Work 

The re-sampling method based on the crossover and mutation of genetic algorithms is 
proposed to swell the sign language database and improve the recognition accuracy of 
gestures. The re-sampling is designed to generate a number of new samples, which 
are used to train HMMs, from the existing ones. Crossover is employed to simulate 
the procedure. Experiments conducted on a sign language database containing 350 
static gestures (1440 gesture samples) show that the recognition accuracy is improved 
by applying the proposed method. 

This idea can be used for dynamic gestures, too. But the procedure of crossover 
and mutation will be much more complicated. The parents should be warped by 
dynamic programming, such as DTW. Furthermore, there are more factors that can be 
mutated, for example, the scope or speed of action, the track of movement, etc. How 
to generate the gestures of other signers is the key to resolve the absence of data of the 
signer-independent sign language recognition systems.  
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Abstract. In this paper, we present a system for automatic sign lan-
guage recognition of segmented words in American Sign Language (ASL).
The system uses appearance-based features extracted directly from the
frames captured by standard cameras without any special data acquisi-
tion tools. This means that we do not rely on complex preprocessing of
the video signal or on an intermediate segmentation step that may pro-
duce errors. We introduce a database for ASL word recognition extracted
from a publicly available set of video streams. One important property of
this database is the large variability of the utterances for each word. To
cope with this variability, we propose to model distinct pronunciations
of each word using different clustering approaches. Automatic clustering
of pronunciations improves the error rate of the system from 28.4% to
23.2%. To model global image transformations, the tangent distance is
used within the Gaussian emission densities of the hidden Markov model
classifier instead of the Euclidean distance. This approach can further
reduce the error rate to 21.5%.

1 Introduction

In the domain of sign language recognition from video, most approaches try to
segment and track the hands and head of the signer in a first step and sub-
sequently extract a feature vector from these regions [1, 2, 3, 4]. Segmentation
can be difficult because of possible occlusions between the hands and the head
of the signer, noise or brisk movements. Many approaches therefore use special
data acquisition tools like data gloves, colored gloves or wearable cameras. These
special tools may be difficult to use in practical situations.

In this work, we introduce a database of video streams for American sign
language (ASL) word recognition. The utterances are extracted from a publicly
available database and can therefore be used by other research groups. This
database, which we call ‘BOSTON50’, consists of 483 utterances of 50 words. One
important property of this database is the large visual variability of utterances
for each word. This database is therefore more difficult to recognize automatically
than databases in which all utterances are signed uniformly. So far, this problem
has not been dealt with sufficiently in the literature on sign language recognition.

To overcome these shortcomings we suggest the following novel approaches:
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1. The system presented in this paper is designed to recognize sign language
words using simple appearance-based features extracted directly from the
frames which are captured by standard cameras without any special data
acquisition tools. This means that we do not rely on complex preprocessing
of the video signal or on an intermediate segmentation step that may produce
errors.

2. Because of the high variability of utterances of the same class, we explic-
itly model different pronunciations of each word of the database. We em-
ploy and compare different clustering methods to determine the partitioning
into pronunciations: manual clustering, k-means clustering, and hierarchical
LBG-clustering. Manual clustering uses a hand-labeled partitioning of the
utterances. The k-means algorithm is initialized with the number of clusters
and manually selected seed utterances. The hierarchical LBG-clustering par-
titions the data automatically and only needs one parameter to control the
coarseness of the clustering. The results obtained lead us to also consider a
nearest neighbor classifier that performs surprisingly well.

3. To deal with the image variability, we model global affine transformations
of the images using the tangent distance [6] within the Gaussian emission
densities instead of the Euclidean distance.

In Sections 2 and 3, we introduce the database BOSTON50 and the appear-
ance-based features used in the system, respectively. Section 4 describes the de-
cision making and the hidden Markov model (HMM) classifier. Tangent distance
and the way it is employed in the HMM is explained in Section 5. In Section 6,
the different clustering methods and their properties are described. Finally, the
experimental results and conclusions are discussed in Sections 7 and 8.

2 Database

The National Center for Sign Language and Gesture Resources of the Boston
University has published a database of ASL sentences1 [7]. It consists of 201
annotated video streams of ASL sentences. Although this database was not
recorded primarily for image processing and recognition research, we consid-
ered it as a starting point for a recognition corpus because the data are available
to other research groups and, thus, can be a basis for comparisons of different
approaches.

The signing is captured simultaneously by four standard stationary cameras
where three of them are black/white and the remaining one is a color camera.
Two black/white cameras, directed towards the signer’s face, form a stereo pair.
Another camera is installed on the side of the signer. The color camera is placed
between the cameras of the stereo pair and is zoomed to capture only the face
of the signer. The movies are recorded at 30 frames per second and the size of
the frames is 312×242 pixels. We use the published video streams at the same
frame rate but extract the upper center part of size 195×165 pixels. (Parts of
the bottom of the frames show some information about the frame and the left
and right border of the frames are unused.)
1 http://www.bu.edu/asllrp/ncslgr.html
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Fig. 1. The signers as viewed from the two camera perspectives

To create our database for ASL word recognition which we call BOSTON50,
we extracted 483 utterances of 50 words from this database as listed in the
appendix along with the number of utterances of each word. The utterances of
the sign language words are segmented within our group manually.

In the BOSTON50 database, there are three signers, one of them male and
two female. The signers are dressed differently and the brightness of their clothes
is different. We use the frames captured by two of the four cameras, one camera
of the stereo camera pair in front of the signer and the lateral camera. Using
both of the stereo cameras and the color camera may be useful in stereo and
facial expression recognition, respectively. Both of the cameras used are in fixed
positions and capture the videos simultaneously. The signers and the views of
the cameras are shown in Figure 1.

3 Feature Extraction

In this section, we briefly introduce the appearance-based features used in our
ASL word recognition system. In [5], we introduce different appearance-based fea-
tures in more detail, including the original image, skin color intensity, and differ-
ent kinds of first- and second-order derivatives. The results show that down-scaled
original images extracted after skin intensity thresholding perform very well. Ac-
cording to these results we employ these features in the work presented here.

The definition of the features is based on basic methods of image processing.
The features are directly extracted from the images of the video frames. We
denote by Yt(i, j) the pixel intensity at position (i, j) in the frame t of a sequence,
t = 1, . . . , T .

To disregard background pixels, we use a simple intensity thresholding. This
thresholding aims at extracting the hand and the head, which form brighter
regions in the images. This approach is not a perfect segmentation and we can-
not rely on it easily for tracking the hands because the output of the thresh-
olding consists of the two hands, face and possibly some parts of the signer’s
clothes.
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Fig. 2. Example of the features used by the classifier: original image (left), thresholded
image (center), and down-scaled image (right)

Xt(i, j) =
{

Yt(i, j) : Yt(i, j) > Θ
0 : otherwise

(1)

Where Xt(i, j) is an image frame at time t with the brightness threshold Θ.
We can transfer the matrix of an image to a vector xt and use it as a feature

vector. To decrease the size of the feature vector, we use the original image
down-scaled to 13×11 pixels denoted by X ′

t.

xt,d = X ′
t(i, j), d = 13 · j + i, (2)

where xt = [xt,1, ..., xt,d, ..., xt,D] is the feature vector at time t with the dimen-
sion D = 143.

Some examples of features after processing are shown in Figure 2. To increase
the information extracted from the videos, we may use the frames of two cameras.
One of the cameras is installed in front of the signer and the second one is fixed at
one side. We concatenate the information of the frames captured simultaneously
by these cameras. We weight the features extracted by the two cameras because
there is more occlusion of the hands in the images captured by the lateral camera.
According to experiments reported in [5], we weight the features of the front
camera and lateral camera with the weights 0.38 and 0.62, respectively.

4 Decision Process

The decision making of our system employs HMMs to recognize the sign language
words2. This approach is inspired by the success of the application of HMMs in
speech recognition [8] and also most sign language recognition systems [1, 2, 3, 4,
5]. The recognition of sign language words is similar to spoken word recognition
in the modelling of sequential samples. The topology of the HMM used is shown
in Figure 3. There is a transition loop at each state and the maximum allowed
transition is set to two, which means that, at most, one state can be skipped.
We consider one HMM for each word w = 1, ..., W . The basic decision rule used
for the classification of xT

1 = x1, ..., xt, ... xT is:

2 Some of the code used in feature extraction and decision making is based on the LTI
library that is available under the terms of the GNU Lesser General Public License
at http://ltilib.sourceforge.net.
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Fig. 3. The topology of the employed HMM

xT
1 −→ r(xT

1 ) = arg max
w

(
Pr(w|xT

1 )
)

= arg max
w

(
Pr(w) · Pr(xT

1 |w)
)
, (3)

where Pr(w) is the prior probability of class w, and Pr(xT
1 |w) is the class con-

ditional probability of xT
1 given class w. The Pr(xT

1 |w) is defined as:

Pr(xT
1 |w) = max

sT
1

T∏
t=1

Pr(st|st−1, w) · Pr(xt|st, w), (4)

where sT
1 is the sequence of states, and Pr(st|st−1, w) and Pr(xt|st, w) are the

transition probability and emission probability, respectively. The transition prob-
ability is estimated by simple counting. We use the Gaussian mixture densities as
emission probability distribution Pr(xt|st, w) in the states. The emission prob-
ability is defined as:

Pr(xt|st, w) =
L(st,w)∑

l=1

Pr(xt, l|st, w)

=
L(st,w)∑

l=1

Pr(l|st, w) · Pr(xt|st, w, l), (5)

where L(st, w) is the number of densities in each state and

Pr(xt|st, w, l) =
D∏

d=1

1√
2πσ2

l,st,w,d

· exp

(
− (xt,d − μl,st,w,d)2

σ2
l,st,w,d

)
. (6)

In this work, the sum is approximated by the maximum, and the emission
probability is defined as:

Pr(xt|st, w) = max
l

Pr(xt, l|st, w)

= max
l

Pr(l|st, w) · Pr(xt|st, w, l). (7)

To estimate Pr(xt|st, w), we use the maximum likelihood estimation method
for the parameters of the Gaussian distribution, i.e. the mean μst,w,d and the
variances σst,w,d. Here, the covariance matrix is modeled to be diagonal, i.e. all
off-diagonal elements are fixed at zero. The number of states for the HMM of each
word is determined by the minimum sequence length of the training samples.
Instead of a density-dependent estimation of the variances, we use pooling during
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the training of the HMM, which means that we do not estimate variances for
each density of the HMM, but instead we estimate one set of variances for all
densities in the complete model (word-dependent pooling).

We use the Viterbi algorithm to find the maximizing state sequence sT
1 . In

the Viterbi algorithm, we calculate the score of the observation feature vector xt

in the emission probability distribution Pr(xt|st, w) at each state st. Assuming
the Gaussian function with diagonal covariances for Pr(xt|st, w), as described
above, this score is calculated as:

− log Pr(xt|st, w) = min
l

{1
2

D∑
d=1

(xt,d − μl,st,w,d)2

σ2
l,st,w,d︸ ︷︷ ︸

distance

− log Pr(l|st, w) +

1
2

D∑
d=1

log(2πσ2
l,st,w,d)

}
. (8)

In this work, the feature vector xt is a down-scaled image at time t with a
dimensionality of D = 143. Therefore, the sum

∑D
d=1(xt,d−μl,st,w,d)2/σ2

l,st,w,d is
the distance between the observation image at time t and the mean image μl,st,w

of the state st which is scaled by the variances σ2
l,st,w,d. This scaled Euclidean

distance can be replaced by other distance functions such as the tangent distance,
which we will introduce in the following section.

The number of utterances in the database for each word is not large enough
to separate them into training and test sets, for example some words of the
database occur only twice. Therefore, we employ the leaving one out method
for training and classification, i.e. we test the classifier on each sample in turn
while training on the remaining 482 samples. The percentage of the misclassified
utterances is the error rate of the system.

5 Tangent Distance

In this section, we give an overview of the distance measure invariant to affine
transformations called tangent distance, which was first introduced in [9]. The
incorporation into a statistical system was presented in [6]. An invariant distance
measure ideally takes into account transformations of the patterns, yielding small
values for patterns which mostly differ by a transformation that does not change
class-membership.

Let xt ∈ IRD be a pattern, and xt(α) denote a transformation of xt that
depends on a parameter L-tuple α ∈ IRL, where we assume that this transfor-
mation does not affect class membership (for small α). The set of all transformed
patterns is now a manifold Mxt =

{
xt(α) : α ∈ IRL

} ⊂ IRD in pattern space.
The distance between two patterns can then be defined as the minimum dis-
tance between the manifold Mxt of the pattern xt and the manifold Mμ of
a class specific prototype pattern μ. This manifold distance is truly invariant
with respect to the regarded transformations. However, the distance calculation
between manifolds is a hard non-linear optimization problem in general. The
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manifolds can be approximated by a tangent subspace M̂. The tangent vectors
xt,l that span the subspace are the partial derivatives of xt(α) with respect to the
parameters αl (l = 1, . . . , L), i.e. xt,l = ∂xt(α)/∂αl. Thus, the transformation
xt(α) can be approximated using a Taylor expansion at α = 0:

xt(α) = xt(0) +
L∑

l=1
αlxt,l +

L∑
l=1

O(α2
l ) (9)

The set of points consisting of the linear combinations of the tangent vectors
xt,l added to xt forms the tangent subspace M̂xt , a first-order approximation
of Mxt :

M̂xt =
{
xt +

L∑
l=1

αlxt,l : α ∈ IRL
} ⊂ IRD (10)

Using the linear approximation M̂xt has the advantage that distance calculations
are equivalent to the solution of linear least square problems, or equivalently,
projections into subspaces, which are computationally inexpensive operations.
The approximation is valid for small values of α, which nevertheless is sufficient in
many applications, as Fig. 4 shows for example of an image frame of BOSTON50
dataset. These examples illustrate the advantage of tangent distance over other
distance measures, as the depicted patterns all lie in the same subspace and can
therefore be represented by one prototype and the corresponding tangent vectors.
The tangent distance between the original image and any of the transformations
is therefore zero, while the Euclidean distance is significantly greater than zero.
Using the squared Euclidean norm, the tangent distance is defined as:

d(xt, μ) = min
α,β∈IRL

{||(xt +
L∑

l=1
αlxt,l) − (μ +

L∑
l=1

βlμl)||2
}

(11)

This distance measure is also known as two-sided tangent distance. To reduce
the effort for determining d(xt, μ), it may be convenient to restrict the tangent
subspaces to the derivatives of the reference or the observation. The resulting
distance measure is then called one-sided tangent distance. In this work, we
replaced the Euclidean distance with the one-sided tangent distance using the
derivatives of the mean image μst in state st.

Fig. 4. Example of first-order approximation of affine transformations (Left to right:
original image, ± horizontal translation, ± vertical translation, ±axis deformation, ±
diagonal deformation, ± scale, ± rotation)
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6 Clustering

Due to the high variability of utterances for each word in the database, we
consider different pronunciations for utterances of each word. Note that this
approach involves a tradeoff; while we may be able to better model the different
pronunciations when we use separate HMMs, we are left with fewer data to
estimate the HMMs from. We employ and compare three methods of clustering
to determine the partitioning into clusters.

Manual Clustering. We observed that there are large visual differences be-
tween the utterances of each word, and that they are visually distinguishable.
Thus, we are able to label the utterances of different pronunciations for each word
as a baseline. We separated the 483 utterances of the BOSTON50 database to
83 pronunciations for the 50 words. The results obtained using this method serve
as a lower bound for the automatic methods described in the following because
we cannot hope to obtain a better cluster structure. Obviously, for any larger
task it will not be feasible to perform a manual labelling. Interestingly, as the
experimental results show, the automatic methods can yield error rates that are
close to the ones obtained with manually selected labels.

k-means Clustering. One basic but very popular clustering approach is the
k-means clustering method. In this method the number of clusters is assumed
to be known beforehand and equal to k. We choose one utterance of each of the
clusters that were labeled manually as a seed in the initialization. The algorithm
continues by adding other utterances to the cluster.

In this algorithm for all words of the database: after initializing k (number
of the clusters) and calculating the μi as the mean of a the Gaussian function
made by utterances of each cluster, all samples would be classified to the nearest
cluster. This would be repeated until no change happens in clusters.

LBG-Clustering. The k-means clustering still uses some manually extracted
information, i.e. the number of clusters and the initializing seeds of the clusters.
We employ the LBG-clustering algorithm proposed by [10] to overcome this
constraint and obtain a fully automatic clustering algorithm. This method is
described as follows: We perform the clustering for all words of the database as
it is shown in Figure 5. First, we assume that all utterances belong to one cluster
or particular pronunciation and create an HMM with all utterances existing for
a word. If the criterion for dividing a cluster is met, we divide this HMM into two

με

ε

μ

μ

1

2

Fig. 5. The LBG-clustering
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new cluster centers by adding or subtracting a small value to all means of the
states in the model. Then we calculate the similarity between all possible pairs
of cluster centers for the word and merge them if the criterion for merging is
met. We continue to divide and merge the clusters until no change in the cluster
assignment occurs.

The criterion function is defined to calculate the dispersion or scattering of
the utterances in a cluster. We use the mean squared distance of the utterances
to the mean model as a measure of scatter and normalize that value to the
range [0, 1]. We consider a threshold value for this criterion function to control
the coarseness of the clustering.

Nearest Neighbor Classifier. Nearest neighbor classification is a special case
in modelling of the different pronunciations. In nearest neighbor classification
the number of pronunciations is considered to be equal to the number of the
training utterances for each word. Using each training utterance in the database,
we create an HMM. According to the leaving one out method used in this work
we separate an utterance as a test utterance from the database. This unknown
utterance is classified as belonging to the same class as the most similar or
nearest utterance in the training set of the database. This process is repeated
for all utterances in the database.

7 Experimental Results

The experiments have been started by employing an HMM for each word of
the BOSTON50 database resulting in an error rate of 28.4% with Euclidean
distance. We repeated the experiment using the different proposed clustering
methods and the tangent distance.

The results are summarized in Table 1. The results show that, in all exper-
iments, tangent distance improves the error rate of the classifiers by between
2 and 10 percent relative. Furthermore, employing clustering methods and the
nearest neighbor classifier yields a lower error rate than obtained without con-
sidering different pronunciations. The threshold value used in LBG-clustering is
a normalized value. When the threshold value is set to 1, no clustering occurs,
and when it is set to 0 each utterance will form a separate cluster and the clas-
sifier converges to the nearest neighbor classifier. The error rate of the classifier
using LBG-clustering with respect to the threshold value is shown in Fig. 6. We

Table 1. Error rates [%] of the HMM classifier with different distances and clusterings

Euclidean Tangent
Distance Distance

No Clustering 28.4 27.7
Manual Partitioning 22.8 20.5
k-means Clustering 23.8 21.3
LBG Clustering 23.2 21.5
Nearest Neighbor 23.6 22.2
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Fig. 6. Error rate of the system with respect to the threshold of clustering

can observe that, with a threshold value of 1, no clustering happens and the
error rate is equal to the error rate of the classifier without any pronunciation
modeling. When decreasing the threshold value, the error rate is reduced and
we can achieve the best error rate of 23.2% and 21.5% using the Euclidean dis-
tance and the tangent distance, respectively. The fluctuations we can observe in
the diagram for threshold values between 0 and 0.4 lead us to the conclusion
that the determination of the best threshold value is not very reliable. Never-
theless, we can observe that there is a strong trend of reducing error rates for
smaller threshold values. This leads us to consider the nearest neighbor classifier,
which corresponds to the threshold value zero and achieves error rates of 23.6%
and 22.2% with the Euclidean distance and the tangent distance, respectively.
Because these values are only slightly less than the best –but unstable– result
for LBG clustering, this approach should be considered for tasks with a large
variability of utterances.

The best error rate of 20.5% is achieved using manual clustering and tangent
distance but the results achieved using other clustering methods will be prefer-
able for large databases because they do not involve human labeling of video
sequences. The best pronunciation clustering method without human interven-
tion is the hierarchical LBG-clustering with tangent distance and an error rate
of 21.5%, which is an improvement of over 22 percent relative.

In the experiments reported above, mixture densities with a maximum num-
ber of five densities are used in each state. We have repeated the experiments
employing single density and mixture densities, consisting of more densities, in
the states of the HMMs. Table 2 shows the results of the experiments employing
the tangent distance and different clustering methods. The results show that us-
ing a higher number of densities within a mixture density improves the accuracy
of the system. In other words, the mixture densities can model the variability of
the utterances even without employing the clustering methods. The error rate
of the system without any clustering method is 22.8%. In most experiments, the
better results are achieved when mixture densities are used in the states. When
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Table 2. Error rates [%] of the HMM classifier employing single and mixture densities

Single Density Mixture Density
No Clustering 47.4 22.8
Manual Partitioning 35.4 21.9
k-means Clustering 33.1 21.1
LBG Clustering 21.7 22.1

mixture densities are used, the influence of different clustering methods on the
error rate of the system is much less than single density experiments.

About half of the remaining errors are due to visual singletons in the dataset,
which cannot be classified correctly using the leaving one out approach. This
means that one word was uttered in a way that is visually not similar to any of the
remaining utterances of that word. For example, all but one of the signs for POSS
show a movement of the right hand from the shoulder towards the right side of
the signer, while the remaining one shows a movement that is directed towards
the center of the body of the signer. This utterance thus cannot be classified
correctly without further training material that shows the same movement. This
is one of the drawbacks of the small amount of training data available.

A direct comparison to results of other research groups is unfortunately not
possible here, because there are no results published on publicly available data so
far, and research groups working on sign language or gesture recognition usually
use databases that were created within the group. We hope that other groups
will produce results for comparison on the BOSTON50 database in the future.

8 Conclusion

In this paper we introduced an appearance-based sign language recognition sys-
tem. According to our results, considering different pronunciations for sign lan-
guage words improves the accuracy of the system.

Due to the modeling of different pronunciations of each word in the database,
we employed three kinds of the clustering methods; manual clustering, k-means
clustering and hierarchical LBG-clustering. These methods can be chosen ac-
cording to the size of the database in different applications.

Although manual clustering gives more accuracy, it needs manually extracted
information and can therefore only be employed for small sets of data. The
k-means clustering needs less initial information and only needs to be initial-
ized with the number of clusters and manually selected seed utterances, so
this method is also suitable for medium size databases. In contrast, the LBG-
clustering method partitions the data automatically and is preferable for large
databases where extracting labels manually is unfeasible. According to the re-
sults of the experiments on the BOSTON50 database, LBG-clustering leads us
to use the nearest neighbor classifier that performs surprisingly well. In all ex-
periments, the tangent distance was compared to the Euclidean distance within
the Gaussian emission densities. Using the tangent distance that models small
global affine transformations of the images improves the accuracy of the classifier
significantly.
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Appendix: Visual Lexicon Data

The BOSTON50 database consists of 50 sign language words that are listed with
the number of occurrences here:

IXi (37), BUY (31), WHO (25), GIVE (24), WHAT (24), BOOK (23), FU-
TURE (21), CAN (19), CAR (19), GO (19), VISIT (18), LOVE (16), ARRIVE
(15), HOUSE (12), IXi“far” (12), POSS (12), SOMETHING/ONE (12), YES-
TERDAY (12), SHOULD (10), IX-1p (8), WOMAN (8), BOX (7), FINISH (7),
NEW (7), NOT (7), HAVE (6), LIKE (6), BLAME (6), BREAK-DOWN (5),
PREFER (5), READ (4),COAT (3), CORN (3), LEAVE (3), MAN (3), PEOPLE
(3),THINK (3), VEGETABLE (3) VIDEOTAPE (3), BROTHER (2), CANDY
(2), FRIEND (2), GROUP (2), HOMEWORK (2), KNOW (2),LEG (2), MOVIE
(2), STUDENT (2), TOY (2), WRITE (2).
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Abstract. A sign language recognition system based on Hidden Markov Mod-
els(HMMs) and Auto-regressive Hidden Markov Models(ARHMMs) has been 
proposed in this paper. ARHMMs fully consider the observation relationship 
and are helpful to discriminate signs which don’t have obvious state transitions 
while similar in motion trajectory. ARHMM which models the observation by 
mixture conditional linear Gaussian is proposed for sign language recognition. 
The corresponding training and recognition algorithms for ARHMM are also 
developed. A hybrid structure to combine ARHMMs with HMMs based on the 
trick of using an ambiguous word set is presented and the advantages of both 
models are revealed in such a frame work. 

Keywords: Computer Vision, Sign Language Recognition, HMM, Auto-
regressive HMM. 

1   Introduction 

Visual sign language recognition aroused many researcher’s interests nowadays. The 
successful application of HMMs to speech recognition brought the ideas of using it in 
sign language recognition. Starner [1] presented two video-based systems for real-
time recognizing sentence-level continuous ASL. Some extension of HMMs was also 
applied to sign language recognition. Tatsuya Ishihara [2] et al provides a method to 
recognize gestures using auto-regressive coefficients of features.Traditional HMMs 
only consider the relationship between every state, while the information between 
observations has been lost. To solve this problem we present a novel method to incor-
porate auto-regressive HMMs in our original system based on traditional HMMs. 

S1 S3S2 S4

O1 O2 O3 O4
 

Fig. 1. Auto-regressive HMMs 
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2   Auto-regressive HMMs and Parameter Estimation 

The regular HMMs assumes that the observations are conditionally independent given 
the hidden state is quite strong, and can be relaxed at little extra cost. This model 

reduces the effect of the tN  “bottleneck”, by allowing tO  to be predicted by 1tO −  as 

well as tN , this results in models with higher likelihood. Figure 1 illustrates this kind 

of ARHMM that we use in this paper. Mixture conditional linear Gaussian function is 
implemented to model the consecutive signal. That is, 
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where jmc  is the mixture coefficient. 
1

1
M

jm
m

c
=

= , 0jmc >  and 1 j N≤ ≤ , 

1 m M≤ ≤ , M  is the number of mixture terms.The estimation of regression matrix 

iB  [3] for the observational density function is 
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t j mγ  is the conditional probability density  of the data which comes from the t th 

frame and is at state j  and is the m th term in the mixture Gaussian function.The reestimate 

formulations of , , , ,i ij jm m ma cπ μ  could be calculated as that of the standard 

HMMs. 

3   Sign Language Recognition Systems 

As shown in Figures 2 and 3, this system measures hand gestures using input devices 
USB PC color video camera. The feature extraction process can be referred to [4]. 
Both HMMs and ARHMMs are applied under the trick of ambiguous word set. We 
here adopt the hybrid structure in our system because the lack of training data is a 
main problem in applying ARHMM to sign language recognition. The basic idea is 
illustrated in Figure 3. The recognition result list is generated from the ambiguous 
word set in which words accurately recognized by HMMs correspond only one word 
otherwise correspond several words in the ambiguous word set. 

Both HMMs and auto-regressive HMMs are used in our system. As shown in fig-
ure 2, the ARHMMs can be viewed as a refiner classifier, which could also be called 
a “tuner”.After the video data being processed and the features extracted, the feature 
data was input to the HMMs. Figure 3 gives the detail of double layer recognition 
process. For every HMM, we use a large amount of samples to test the models. So a  
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Fig. 2. System overview                                    Fig. 3. Double layer recognition scheme 

Table 1. Recognition result of HMM 

number of word to be 
recognized 

number of wrongly rec-
ognized word recognition accuracy 

439 35 92.0% 

Table 2. Recognition result of HMM and ARHMM 

number of word to be 
recognized 

number of wrongly rec-
ognized word recognition accuracy 

439 15 96.6% 

  
(a) (b) 

Fig. 4. Two signs which can’t be discriminated by regular HMM (a) inaugurate (b) propa-
gandize 

certain model may correspond to one word of the right recognition result or several 
words which are wrongly recognized as that word. This process is called a coarse 
classification. After initializing B, we train the ARHMMs, Section 3 gives the details 
of parameter estimation. 

The process of recognition is to choose a model which describes the observation 
signal the best from the candidate models set. Since our system is double-layer with 
HMMs and ARHMMs. Once there is an unknown sign waiting to be recognized, it 
should be first classified by HMMs. If it is recognized as a word which does not appear 
in the ambiguous word set, it would not be reclassified by ARHMM. Otherwise, if it is 
recognized as a word whose model corresponds to several words, the word will be 
classified further by ARHMMs. Therefore, both models contribute to the recognition 
accuracy of our system. The advantages of both models have been fully considered. 
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4   Experiments and Results 

We collect the signs in the 439-sign lexicon, each 5 times for every signs i.e. 2195 
signs are collected, where 4 times data are used to build the training set and the re-
maining 1 time data to build the testing set.  

The word recognition accuracy of the lexicon signs based on HMMs is shown in 
Table 1. After incorporating ARHMMs to our original system, we get the recognition 
result in Table 2.We can see that the word recognition accuracy improves 4.6% after 
incorporating ARHMMs to the system.  

It shows that the regression matrix of ARHMMs is good at modeling linear motion 
trajectory. For example, in Figure 4 “inaugurate” and “propagandize” are double-hand 
words with hands moving aside. ARHMMs based on conditional linear Gaussian can 
describe this observation well. The auto-regressive matrix gives a better description of 
the hand motion than regular HMMs. But with no constraints on the lighting condi-
tion and background, the features of some frames can not be detected or assumed as 
abnormal values directly because we can “see” these features in two-dimensional 
view. These factors are the main reasons that our ARHMMs based on conditional 
linear Gaussian has worse performance than regular HMMs in modeling some signs. 
Our two layers’ classifier complements the deficiency of both models. So ARHMMs 
helps to recognize confusing words and may be a good method for large vocabulary 
sign language recognition. 

5   Conclusions 

In this paper, we present a method to model temporal signals ARHMM and a hybrid 
structure to combine both ARHMMs and HMMs to recognize isolated sign language 
words. The experimental result shows that the ARHMMs can greatly improve the 
whole recognition rate for its good ability to model the linear movement. Future work 
should add 3-D information to features to improve the performance of ARHMMs; 
Other observation representation should also be explored for a better description of 
observational signals. 
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Abstract. Hitherto, one major challenge to sign language recognition is how to 
develop approaches that scale well with increasing vocabulary size. In large 
vocabulary speech recognition realm, it is effective to use phonemes instead of 
words as the basic units. This idea can be used in large vocabulary Sign 
Language recognition, too. In this paper, Etyma are defined to be the smallest 
unit in a sign language, that is, a unit that has some meaning and distinguishes 
one sign from the others. They can be seen as phonemes in Sign Language. 
Two approaches to large vocabulary Chinese Sign Language recognition are 
discussed in this paper.  One uses etyma and the other uses whole signs as the 
basic units. Two CyberGloves and a Pohelmus 3-D tracker with three receivers 
positioned on the wrist of CyberGlove and the back are used as input device. 
Etymon- and word- based recognition systems are introduced, which are 
designed to recognize 2439 etyma and 5100 signs. And then the experimental 
results of these two systems are given and analyzed. 

1   Introduction 

Sign language, as a kind of structured gesture, is one of the most natural means of 
exchanging information for most deaf people. It is a kind of visual language via hand 
and arm movements accompanying facial expressions and lip motions. The aim of 
sign language recognition is to provide an efficient and accurate mechanism to 
translate sign language into text or speech.  

Attempts to automatically recognize sign language began to appear at the end of 
80’s. T.Starner [1] achieved a correct rate of 91.3% for 40 signs based on the image. 
By imposing a strict grammar on this system, the accuracy rates in excess of 99% 
were possible with real-time performance. Fels and Hinton [2][3] developed a system 
using a VPL DataGlove Mark II with a Polhemus tracker as input devices. Neural 
network was employed for classifying hand gestures. R.H.Liang and M. Ouhyoung[4] 
used HMM for continuous recognition of Tainwan Sign language with a vocabulary 
between 71 and 250 signs by using Dataglove as input devices. C. Wang[5] realized a 
continuous Chinese Sign Language (CSL) recognition system with a vocabulary of 
5100 signs. C. Vogler and D. Metaxas[6] described an approach to continuous, 
                                                           
*  This research is sponsored by Natural Science Foundation of China (No. 60533030). 
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whole-sentence ASL recognition, in which phonemes instead of whole signs were 
used as the basic units. They experimented with 22 words and achieved similar 
recognition rates with phoneme-based and word-based approaches.  

From the review of the previous researches above mentioned, we know that most 
researches on continuous sign language recognition were done on small test 
vocabulary. The major challenge to sign language recognition is how to develop 
approaches that scale well with increasing vocabulary size. In speech recognition, 
using phonemes as basic unit assuredly is an effective solution to large vocabulary 
system. Is this idea also useful in large vocabulary sign language recognition? 

In this paper, we discuss two approaches to large vocabulary Chinese Sign 
Language (CSL) recognition. One uses etyma and the other uses whole signs as the 
basic units. The results of these two approaches are compared.  

2   Etymon-Based System  

Two CyberGloves and a Pohelmus 3-D tracker with three receivers positioned on the 
wrist of CyberGlove and the back are used as input device. The raw gesture data 
include hand postures, positions and orientations. A sign is a sequence of frames. A 
frame of the raw gesture data, which in our system are obtained from 36 sensors on 
two datagloves, and three receivers mounted on the datagloves and the waist, are 
formed as 48-dimensional vector. A dynamic range concept is employed in our 
system for satisfying the requirement of using a tiny scale of data. The dynamic range 
of each element is different, and each element value is normalized to ensure its 
dynamic range 0-1.  

Here, one etymon is defined to be the smallest unit in a sign language, that is, a 
unit that has some meaning and distinguishes one sign from another. For example, 
“Teacher” is composed by two etyma, which are shown in Fig. 1. The Bopomofo are 
considered as etyma, which can facilitate the CSL recognition when finger-alphabet is 
used accompanying with gestures. Unlike the etyma in spoken language, no explicit 
definition of the etymon exits in the CSL linguistics. Based on extensive and thorough 
analysis of 5100 signs in CSL, we find all the units that form all the signs in the CSL 
dictionary. Finally, about 2400 etyma are explicitly defined for CSL. 

The sign data collected by the gesture-input devices is fed into the feature 
extraction module, and then the feature vectors are input into the training module, in 
which a model is built for each etymon. The signs are encoded based on the etyma, 
and the Etymon-sequences of signs are stored in a codebook, based on which the tree-
structured network and forward index tables are built to reduce the search range [7].  
 

 

Fig. 1. Two Etyma in the word “Teacher” 
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The language model that is used in our system is Bi-gram model. The decoder 
controls the search for the most likely priority of sign appearance in a sign sequence. 
Then the sign sequence is exported from the decoder.  

3   Experimental Results Comparison 

In order to compare these two methods, some experiments are carried out. 5100 signs 
in CSL dictionary are used as evaluation vocabulary. Each sign was performed five 
times, four times are used for training and one for testing. 2439 etyma are defined for 
CSL. Each Etymon was performed five times for training. The number of states in 
HMMs is 3. 5100 signs are coded with these etyma automatically. Experiments are 
done based on word and etyma respectively.  

One sign consists of one or more etyma. Each sign is a string of etyma. Therefore, 
there is movement epenthesis between two etyma, which will affect the recognition 
results. For the system based on etyma, recognizing a sign is similar to recognizing a 
sentence based on signs, so the recognition rate of isolated signs will decline.  

There are about 2400 basic units and 5100 signs in Chinese sign language. The 
numbers of candidates in these two approaches are equivalent because of the using of 
Viterbi-beam algorithm. Therefore, the time of loop in the system based on etyma is 
half of that in the system based on signs when selecting the candidates. In the 
following two parts, the times of loop are the same. Besides, the algorithm based on 
etyma is more complex, and it takes more time to decode. The approach based on 
etyma does not gain better effect on the aspect of improving the speed.  

The 5100 signs and 2439 etyma are analyzed and it is discovered that many etyma 
have low appearing frequencies in all words, namely they only appear in one or two 
words. For example, the etymon “electric car” is a word by itself, and does not appear 
in any other words. If throwing off the etyma that appear less than twice in 5100 
words, there are 723 etyma left. These etyma compose 3048 words. If deleting the 
etyma that appear less than three times in 5100 words, there are 581etyma and 2650 
words left. Experiments are done with these three vocabularies, and the results are 
shown in Fig. 2. 
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Fig. 2. The comparison of the performances of two systems based on different size of 
vocabulary. Vocabulary-1: 2439 Etyma and 5100 signs; Vocabulary-2: 723 Etyma and 3048 
signs; Vocabulary-3: 581 Etyma and 2650 signs. 
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For the 5100 isolated words, the recognition rate of the approach based on etyma is 
lower than that of the approach based on whole signs. The recognition time based on 
etyma is longer than that based on words. But when the number of etyma with low 
appearing frequencies in all words decreases, the performances based on etyma are 
improved. In the case that the size of the vocabulary is large and the number of words 
is four times more than the number of etyma, the approach based on etyma is the 
proper selection. 

4   Conclusions and Future Work 

In speech recognition, using phonemes as basic unit assuredly is an effective solution 
to large vocabulary system. But is it also useful in sign language recognition? In this 
paper, two approaches to large vocabulary CSL recognition are introduced. 
Experimental results of these two approaches are compared.  

There are, however, many problems that still need to be resolved. The impact of 
the movement between two signs is not eliminated, yet. Context-dependent Etymon 
(TRIPHONE) models will be built to solve this problem. But because the number of 
etyma is much more than that of spoken language, the effect won’t be obviously. How 
to reduce the number of the etyma is the key.  
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Abstract. Gesture and motion analysis is a highly needed process in
the athletics field. This is especially true for sports dealing with acro-
batics, because acrobatics mix complex spatial rotations over multiple
axes and may be combined with various postures. This paper presents
a new vision-based system focused on the analysis of acrobatic gestures
of several sports. Instead of classical systems requiring modelizing hu-
man bodies, our system is based on the modelling and characterization
of acrobatic movements. To show the robustness of the system, it was
successively tested first on movements from trampoline, and also in other
sports (gymnastics, diving, etc.). Within the system, the gestures analy-
sis is mainly carried out by using global measurements, extracted from
recorded movies or live video.

1 Introduction

In computer vision systems, techniques of motion analysis are increasingly robust
and beginning to have an impact beyond laboratories. Such systems could be
useful in order to evaluate the performance of gestures in many applications. We
separate communication gestures and sports gestures. These two fields of appli-
cation use similar algorithms. In the context of communication gesture analysis
many studies are devoted to sign language recognition. This task is well known
to be hard to perform both in the hand/body/face tracking and recognition
processes and in the analysis and recognition of the signs [3][9]. Other gestural
studies deal more extensively with topics such as recognition of human activities
[1]. The athletics sector is in strong demand for movement analysis. The advent
of video techniques in this field already assists users because the video doesn’t
disturb sport gestures (it is non intrusive techniques). However, there are only
few tools allowing automatic analysis in real time, while this type of analysis is
necessary for many live sport performances. This paper addresses some of the
representative publications on automatic systems of sporting gesture analysis.
Yamamoto [4] presents a qualitative study about sporting movement (skiing).
The aim of his study is to discriminate movements performed by people classi-
fied from novice to experts. Another work by Gopal Pingali [8] shows a system
dealing with real time tracking and analysis of a tennis ball trajectory. This
system was used for the tennis US Open 2000. The interest of such systems
is obvious for many sports. But building them is a real challenge. The sport-
ing context is very constraining from the environmental and gestural points of
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view. Our study addresses acrobatic gestures. These gestures present a great
diversity of complex movements. Each sport based on acrobatics requires a re-
fined analysis in order to improve or judge the gesture quality, and this type
of analysis is not commonly available. Sport organizations look forward to the
development of such systems, and they agree with the idea that these systems
could be a useful complement for training and a helpful tool for judges dur-
ing competitions. The use of video techniques (non intrusive techniques) derives
from specifications set by practice conditions. Thus, the athlete will be never
constrained by the system, by contrast with systems involving active sensors for
example. Many studies dealing with gesture analysis use sensors placed on the
body to extract placement coordinates efficiently. Such systems are known as
intrusive, they disturb the human movement making them less natural and they
require a complex installation. Acrobatics make the use of sensors problematic.
Capture devices such as sensors are expensive, invasive and constraining. How-
ever they are very precise compared to image processing. This paper addresses
the development and assessment of an analysis system focused on acrobatic ges-
tures. The system uses a fixed monocular passive sensor. The adopted approach
is based on movement characterization initially used in trampoline competition.
This movement model was improved and is briefly presented in section 2. The
architecture system and its corresponding algorithms are described in section 3.
Then, section 4 show results issued from evaluation of the system’s robustness.
Section 5 presents the use of the system in real situations of gymnastic gestures.
Finally, a conclusion and some prospective comments are developed in the two
last parts.

2 Model of Movement

The system design is based on a model of movement established and used by
trampolinists (for more details refer to the Code of Points of the Fédération In-
ternationale de Gymnastique [11]). It is based on chronological and axial move-
ment decomposition. The model divides the movement into three parts. The
first part relates to the quantity of transversal rotations of the body. The sec-
ond relates to longitudinal rotations of the body distributed by the quantity of
transversal rotations (see example below). The third relates to the body posture.
This model of movement leads to a numerical notation described in more detail
in [2]. This notation is built as follows:

s q v1 . . . vn p

s = [b|f ]

q = [0 − 9]∗

vi = [0 − 9]∗

p = [o| < |/]
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Tuck Pike Layout

Fig. 1. Human body’s positions in trampoline

where s indicates the direction of the figure (f , forward or b, backward ), q
describes the number of somersaults, by quarters, v1 . . . vn represent the distri-
bution and quantity of half twists in each somersault and finally p describes the
shape of the figure (tuck = o, pike =< or layout = / figure 1). Thus, b 8 0 0 o
describes a double backward tuck somersault (720 of rotation) with no twist
whereas f 4 1 / describes a forward layout somersault (360 of rotation) with a
half twist.

This notation is valid for all acrobatic activities because it makes possible to
identify any acrobatic movement. The recognition of each part of this notation
informs us about the quality of realization. It is the basis of our analysis system.
Section 5 shows some examples of use of such a system in gymnastics practice
(trampoline).

3 System Architecture

The system comprises several connected modules in a hierarchical way. A lower
layer level extracts relevant information (typically, pixels of the acrobat). A
higher level layer transforms this information into interpretable data and ana-
lyzes this data. We present these various layers here.

3.1 Lower Level

The lower level layer extracts pixels of the acrobat. Our approach is to build a
statistical model of background image and then to use image subtraction to em-
phasize the moving elements. We build an original method to eliminate noise, we
called it Block filtering. And to optimize the acrobat extraction, we use Kalman
filtering.

Background Model. In this paper, the term background refers to the pixels which
are not moving. Thus, as far as the system is concerned, there is only one person
in field of the camera. The gymnast is always moving while the background
remains constant. However, in training or competition conditions the background
is never fixed. Light variations and people passing behind the athlete make a
background image vary. To adapt the background image variations, we use an
adaptative generation of background. This generation is based on the luminance
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mean of the N last images. The mean is calculated as m(x,y) = S(x,y)

N where
S(x,y) is the sum of pixel values in the location (x, y) and N is the number of the
last frames collected. Subtraction between the current image and the background
highlights fast parts moving. Many pixels are not belonging to the acrobat and
are classified as noisy pixels. A filtering must be applied.

Block Filtering. drops noisy pixels. We include in noisy pixels, any moving pixel
witch is not belonging to the gymnast. The acrobat is in the foreground of the
camera recorder. The subtraction presented above leads to a binary image which
contains pixels from the gymnast and pixels belonging to other moving objects.
The perspective makes the person in the foreground bigger than other moving
objects. Block filtering keeps only the biggest components of the binary image.
The size of elements to be dropped is gauged by the size of blocks. To complete
this filtering, the image is divided into blocks of size (n×m) (a grid of size n×m
is applied on the binary image, it will be called grid block). Each block is marked
as valid, invalid or adjacent. After computing all blocks, the system keeps only
valid blocks and adjacent blocks. Invalid blocks are dropped. A block is marked
as valid when the proportion of binary pixels is superior to a certain threshold.
In the other case it is marked as invalid except if an adjacent block is valid
(in a 8-connexity). In this case, the block is marked as adjacent. By defining
the block size as larger than the noisy pixels elements’ size (moving persons
in the background for example), and by defining a threshold greater than the
noise elements, the noisy pixels are dropped. Figure 2 shows an example of the
algorithm. The upper left image corresponds to the original image. The upper
right image corresponds to the result of the subtraction operation. It shows many
pixels belonging to the noise created by elements moving in the background. The
result of block filtering is given in the last image.

Let C be the mathematical expression for a block at pixel (x, y) on the grid
block :

C(x, y) =

n.((x−1)+1)∑
i=n.(x−1)

m.((y−1)+1)∑
j=m.(y−1)

Ibin(i, j)

n.m

where Ibin(i, j) is the binary image at pixel (i, j). The criteria for selecting valid,
invalid and adjacent block are defined as folow :

Block(x, y) =

{
Valid, if C(x, y) ≥ Th;
Adjacent, ifBlock(x + i, y + j) = V alid ∀i ∈ [−1; 1], ∀j ∈ [−1; 1];
Invalid, otherwise.

where Block(x, y) is a block at pixel (x, y) and Th the percentage of pixels wich
should fill the block (fixed by user).

This filter is efficient when there is enough difference between foreground
and background. However, a collective movement of the audience like a ”holla”
strongly disturb the algorithm. In this paper, the corpus used for this study does
not include such situations.
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Fig. 2. Original image (top left), Binary image (top right) and Block Filtered image
(bottom)

Kalman Filter. To improve time processing, it is important not to compute
the entire images. Only the acrobat is relevant. Consequently, it is necessary to
track the acrobat. Kalman filtering allows the system to predict and estimate
displacement [5].

The region of interest of the image is reduced to a box around the gymnast
(bounding box). All computing tasks are reduced to this bounding box. The
Kalman filtering gives efficient prediction of the box’s location. In addition to
reducing the time processing, the bounding box focuses on the athlete. New ele-
ments around the bounding box do not come to disturb processing (for example,
a person passing in the background). After an initialisation stage, the system is
focused on the gymnast.

3.2 Motion Analysis (High Level)

Our characterization defines acrobatics with axial descriptions and with human
body shape. Motion analysis part first extracts body axis and then analyses the
body shape. Mathematical calculation gives the axis, and surface analysis gives
the shape. These data leads to a part of the numerical notation [2].

Determination of Rotational Quart - Calculation of 2D Orientation. From the
binary image and according to the bounding box, the system computes the prin-
cipal axis of the binary shape. As described in [6] we use a mathematical method
to determine the athlete axis. For discret 2D image probability distributions, the
mean location (the centroid) within the search window, that is computed at step
3 above, is found as follows:
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Find the zeroth moment :

A =
∑

x

∑
y

I(x, y).

Find the first moment for x and y :

Mx =
∑

x

∑
y

xI(x, y), My =
∑

x

∑
y

yI(x, y).

Mean search window location (the centroid) then is found as

x̄ =
Mx

A
, ȳ =

My

A
.

The 2D orientation of the probability distribution is also easy to obtain by
using the second moments in the binary image, where the point (x,y) ranges over
the search window, and I(x,y) is the pixel (probability) value at the point (x,y).

Second moments are :

Mxx =
∑

x

∑
y

x2I(x, y), Myy =
∑

x

∑
y

y2I(x, y), Mxy =
∑

x

∑
y

xyI(x, y).

Let

a =
Mxx

A
− x̄2, b = 2

(
Mxy

A
− x̄ȳ

)
, c =

Myy

A
− ȳ2.

Then the object orientation, or direction of the major axis, is

θ =
arctan

(
b

a−c

)
2

.

The first two eigenvalues, that is, length and width, of the probability distri-
bution of the blob found by the block filtering may be calculated in closed form
as follows:

Then length l and width w from the distribution centroid are

l =

√
(a + c) +

√
b2 + (a − c)2

2
, w =

√
(a + c) −√b2 + (a − c)2

2
.

When used in human tracking, the above equations give body roll, length,
and width as marked in the source video image in Figure 3.

Rotation Tracking. The computed axis leads to the body orientation but it
is not oriented. The given orientation is available at ±π. Indeed, the function
arctan is defined on ] − π

2 ; π
2 [. We use biomechanical constraints to eliminate

ambiguous measurements. A study on physical constraints in acrobatics defined
maximum angular velocities for twist and somersaults. The maximum velocity
for somersault is ωmax = 22 rad.s−1 (or ωmax = 0.89 rad/image for videos
running at 25 images/s). Variations around π are physically impossible. Thus
the instantaneous angular velocity is : ω = θt−1 − θt [π]. And the correct
orientation θ′ is : θ′t = θ′t−1 + ω. This is a relative orientation depending on the
first orientation.
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Fig. 3. Human body’s orientation, length and width

Quarters Detection. Find correctly the number of quarters of somersaults is not
so obvious. When a gymnast execute a somersault, it is frequent that the body
axis does not describe a entire rotation for a simple somersault (for a f 4 0 o
the total rotation is θ′t < 2π). However, the system has to detect 2π i.e. 4
quarters of transversal rotation because the acrobat starts from feet and arrives
on feet (figure 4). For example, a backward somersault (b 4 0 o in clockwise)
starts at π

4 and finishes at 7π
4 . The number of quarters is 3 whereas the system

has to detect 4. We introduce 3 methods to detect quarters. The first method
is to calculate average angular velocity on the portions of somersault where
this velocity is constant. A null angular acceleration generates a constant speed.
While calculating the mean velocity of the constant phase one manages to have
a good idea of the salto carried out. By deferring the mean velocity on the unit
of the jump, we compensate the orientation problems of departure and the end
of the jump. Another method is to compare the takeoff orientation with the
landing orientation. This gives an exact measure. The last method consists in
counting the number of dial crossed by the axis of the body. Somersault rotations
are represented by a disc cut out in dials. This disc is divided into four zones
([0; π

2 [, [π
2 ; π[, [π; 3π

2 [, [3π
2 ; 2π[). To each time the axis enters a new dial it is

entered. These three methods lead to the right detection. The differences among
three methods of detecting quarters are : The first method gives sometimes too
quarters due to the inertia of fast somersaults. However the second method is

0

π

2π

π
2

3π
2

0

π

2π

π
2

3π
2

Fig. 4. Quarters rotation determination
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concerned with the problem of the number of effective quarter and thus gives
less quarters. The third method is correct around ± 1 quarter (when the acrobat
starts from his back, he is hidden by the trampoline, this lead to miss quarter).
By calculating the average of the three methods, quarters are correctly detected
(table 1).

Table 1. Evaluation of recognition and tracking algorithm

Type Test Evaluation
Tracking correlation 93 % 94 %
Tracking standard deviation 26 pixels 26 pixels
Rotations 100 % 98 %
Positions o 57 % 50 %
Positions < 50 % 54 %
Positions / 100 % 100 %

Position Evaluation. The evaluation of the body shape, leads to tuck, pike, or
layout. To this goal, the system needs the axis l, w and the surface of the gymnast
(wich are variable size during somersault). The average lm of the axis l and w is
the diameter of a disc C centred on the centroid of the acrobat. The more the
acrobat is tuck, the more the ratio of w on l is close to 1. And the more the
ration of the surface of the disc C and the surface gymnast is close to 1. Most of
the acrobat’s pixels is included in the disc C. When these results are close to 0,
we can conclude that the body shape is layout. This first stage makes it possible
to differentiate tuck from layout. Nevertheless, tuck and pike are similar shapes.
The pike shape is less compact than the tuck shape. Currently, the system is not
able to make the difference between these two body shapes. Because acrobats are
not perfect, these body shapes are not carried out perfectly. Compared to the
rotational quarters’ part, we have a similar problem and we have to discriminate
right shapes.

Twist Evaluation. Twists are not detected yet. The recognition of all elements
in the numerical notation is not complete. The twist detection is undoubtedly
the most complex part to realize because this movement mix both transversal
rotations and longitudinal rotations.

4 Experimental Result

To assess our system we carried out a video corpus which we manually labelled in
part. We pinpointed the position of the head, hands, base, knees, and feet. The
video corpus comprises more than 100 sequences and more than 1000 figures
performed by 7 athletes. We divided the corpus into two parts: one for the
algorithms adjustment and the other to evaluate them. Evaluations presented
below were carried out on sequences with no audience in the background.
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Body Tracking. From our labelled data, we deduced the centroid of the athlete
(centroid of all labelled body parts). We calculated the correlation between the
data measured manually and the data calculated automatically by the system.
The result is presented in the table 1.

Rotationnal Quart Recognition. Quarters were counted manually and the counts
were then compared with those calculated automatically. The percentage in table
1 represents the relationship between the quarters manually counted and those
recognized by the system.

Position Recognition. In the same way, each body shape was evaluated. They
were first manually labelled and the results were then compared with those
recognized by the system.

Tracking results are sufficient to obtain a good recognition of the somersaults.
The detection of quarters depends on the environment. The system limits appear
clearly. Indeed it is not yet possible to use this system in a competition context,
with a frantic audience in the background! In that situation, the recognition rate
decreases shortly. A better primitives extraction algorithm is then required. The
results for the recognition of quarters show that the system is effective, despite
being occasionally mistaken in extreme cases. Recognition of the body shape has
not been successful so far because it is not possible yet to discriminate between
tuck and pike. The system regularly confuses the two shapes because they are
relatively similar. However information which the system extracts already makes
it possible to be exploited. Under training conditions the system shows a very
good robustness. We will see in the section 5 that it was used in real conditions
to adapt the sporting training.

As for processing time, the system runs in real time. After an initialization
stage, one image is completed on average in 0.019 seconds on a 2.6 Ghz PC. The
real time allows coaches to effectively use this system.

5 Training Evaluation

The system suggested in this article is not finalized. However it is able to extract
significant information from training. In gymnastic apparatus such as the bars
(high bar and uneven bars), the rings, the trampoline, the beam, the system
brings many information which are not obvious during training. The system
helps the coach on not easily remarkable information. We present an example
during trampoline training.

We use the system to adapt the trampoline training. During competitions
preparation, coaches prepare with gymnasts, sequences of 10 elements which
will have to be perfect. An element is a jump, a skill (a salto for example). The
ideal one is to carry out these 10 elements with a constant height. Figures 5 and 6
illustrate the amplitude variations of the 10 elements of a sequence. Each element
is described by using the numerical notation quoted previously. The development
of these sequences is not simple. Each gymnast has its characteristics and its
facilities in realising elements. A movement can be appropriate to an athlete but
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Fig. 6. Corrected sequence (adapted)

not for another. The example below illustrates a traditional sequence carried out
by many gymnasts. During training, this sequence passes with difficulty for an
individual. The gymnast has difficulties practising the movement. The traditional
error would be he has to practice many more. However by looking at the figure 5
one notes a first relatively constant part (elements from 1 to 5), a setback (with
the 6th element) and an increase towards the initial height until the end of the
movement. The connection 5th element, 6th element is too difficult to realize at
this place of the sequence. The idea is to move this connection at the end of the
sequence. The system evaluates the sequence again.

In the corrected movement (figure 6) one finds this abrupt loss of amplitude
(element 8 to 9). But this difficulty does not interfere any more with the other
elements.

The athlete is an actor and can not see what is going wrong; it is the role of
the coach. This one cannot be attentive with all details, especially when they are
not easily locatable. The system highlights a considerable loss of amplitude which
leads to a sequence mediocrity. The accused element then is replaced or moved.
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The system evaluates the amplitudes variations on this example. It is also able
to evaluate the velocities and acceleration of translation and angular rotations of
the global human body. This information is not easily reachable by the human
eye. In the next improvements, the system should be able to recognize and
evaluate them.

6 Perspectives and Conclusion

The first prospect for the system is to be able to evaluate twists quantitatively.
The use of optical flow could solve this problem. The first measurements of
the optical flow [7] leads us to pursue our investigations. The optical flow re-
mains an extremely expenditure in computing time and could offset the value
of real time computing. We therefore propose to calculate the optical flow on
parts of the bounding box after having restored the axis of the body to a ver-
tical position. The rotational component would be cancelled out following the
transversal axis and the translational component. This calculation should high-
light only the longitudinal rotational component. The second prospective element
is to finalize the system to make it a robust recognition system for acrobatic
gesture.

This paper presents an analysis system of sporting gestures by global mea-
surements. The system does not identify the parts of the human body but bases
its recognition on measures of the global human body. Such a system is taken
out of laboratories because it makes analysis in sport context and not in labo-
ratories context. The system is not intrusive. There are no constraints for the
sportsman (no sensor obstructing), it preserves the naturality of the analyzed
gesture. The simplicity of implementation and the low cost of the hardware make
the system accessible to sports coaches. Global measurement can lead to a ro-
bust recognition thanks to an adequate characterization. The low complexity
of the algorithms allows real time. The system gives useable results and it is
already used for training. The system reaches its limits when the camera is not
fixed or when a crowd of people is moving in the background. In the same way
the system does not allow analysis of two persons in the field of the camera.
The system recognizes acrobatic gesture by global measurement. The termi-
nology employed is effective and is recognized in the international trampoline
community. It is certainly not very pleasant but each element has a translation
in every language. This kind of system is very helpful for coaches and judges in
competition.
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Abstract. Gestures are expressive and meaningful body motions used in daily 
life as a means of communication so many researchers have aimed to provide 
natural ways for human-computer interaction through automatic gesture recog-
nition. However, most of researches on recognition of actions focused mainly 
on sign gesture. It is difficult to directly extend to recognize whole body ges-
ture. Moreover, previous approaches used manually segmented image se-
quences. This paper focuses on recognition and segmentation of whole body 
gestures, such as walking, running, and sitting. We introduce the gesture spot-
ting algorithm that calculates the likelihood threshold of an input pattern and 
provides a confirmation mechanism for the provisionally matched gesture pat-
tern. In the proposed gesture spotting algorithm, the likelihood of non-gesture 
Hidden Markov Models(HMM) can be used as an adaptive threshold for select-
ing proper gestures. The proposed method has been tested with a 3D motion 
capture data, which are generated with gesture eigen vector and Gaussian ran-
dom variables for adequate variation. It achieves an average recognition rate of 
98.3% with six consecutive gestures which contains non-gestures. 

1   Introduction 

Human gesture recognition has a wide range of application such as human-machine 
interaction, surveillance, machine control etc[1,2]. For these applications, it is neces-
sary to develop efficient and automatic gesture recognition and segmentation algo-
rithm. In early works, many researchers has bee studied as an alternative form of 
human-computer interface by Starner and Pentland[3] and Quek[4]. Pentland used a 
Hidden Markov Model(HMM) to recognize the gestures in American Sign Language. 
They achieved an accuracy of 99.5 % for 15 gestures. However, this approach is not 
suitable to recognize whole body daily gestures because the syntax is not well under-
stood. Moreover, they used manually segmented image sequences. Kahol[5] proposed 
whole body gesture segmentation algorithm in dance sequences. They employed a 
dynamic hierarchical layered structure to represent human anatomy. This method used 
a few data to test the algorithm and they focused on only segmenting gestures.  Like 
these works, most approaches of gesture recognition using HMM used manually seg-
mented image sequences so that it is difficult to extend to apply to continuous gesture 
recognition. 
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In this paper, we focus on recognition of whole body gesture and spotting a mean-
ingful gesture. We describe gesture as a spatio-temporal sequences of multi-
dimensional features from gesture sequences and cluster the features using Gaussian 
Mixture Model(GMM) for HMM input. The frame sequences are recognized as ges-
tures using the probability calculation of HMM and segmented meaningful gestures 
using gesture spotting algorithm. For rejecting of non-gestures, each reference pattern 
is defined by a keyword model and all the other patters are modeled by garbage model 
which can be used as a threshold value. Figure 1 shows the block diagram of the pro-
posed gesture spotting method. 

Fig. 1. Block diagram of the proposed gesture spotting method 

2   Gestures Modeling 

We will describe which feature is good for our purpose in following section. After 
extraction the features, we represent each gesture as a sequence of body features. The 
temporal relation between these feature is enforced by a hidden markov 
model(HMM), which will be presented in section 3.  

2.1   Feature Extraction from Body Components 

Before extracting feature, we detect and track each body component in each image 
sequence at the pre-processing stage using Yang[6]. He proposed a 3D human body 
pose reconstructing method(see Fig 2). We assume each body component is detected 
and tracked using 3D modeling with few errors at the pre-processing.  

Once each body component is detected, we extract the features from them. On of 
an important cue in discriminating each gesture is to choose a good feature. Raw 
position ),,( zyx , and the Catesian velocity ),,( dzdydx can be used as a features. 

However, raw position is sensitive to rotation and translation. Cartesian velocity is  
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Fig. 2. Each component detecting in image sequence using 3D modeling 

invariant to translation but is also sensitive to rotation. We choose the angle between 
the mid-point and each component for invariance of rotation and translation (see  
Fig. 3). We use the following thirteen components: mid-point, left-right shoulder, 
elbow, wrist, hip, knee, and, ankle. Since there are thirteen components, the feature 
vector can be represented as F in each image sequences. 

},...,,,,,{ _____int_ anklerightElbowrightElbowleftshoulderrightshoulderleftpomidF θθθθθθ=

Each frame is expressed by the feature in high dimension at that particular time. In 
this manner, gesture is defined as an ordered sequence of feature vector, F. We pro-
jected this feature vector high dimension and cluster these features. Each cluster will 

be described with < ii Σ,μ  > where center matrix, and covariance matrix in ith cluster 

respectively. 

Fig. 3. Features from each body component 

2.2   Feature Clustering 

To state the problem mathematically, given a long motion sequence, M , we wish to 
segment that sequence into distinct gesture 

SMM ,...,1
where S is the number of 

boundaries of the gestures(see Fig 4). Each gesture sequence M is represented as a 
sequence of body features, F, which are angles between mid back and each component  
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where s is the number of boundaries of gesture, n is the number of frames, and f is the 
number of features in a single image. 
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Fig. 4. Several continuous gestures sequences 

In the first phase, we learn the distribution of the data distributions without  
temporal information. We cluster each feature vector to model gesture as cluster 
trajectories.  

The underlying assumption of cluster approach is that the frames from different 
simple motions form separate clusters and each cluster can be described reasonably 
well by a Gaussian distribution. Moreover, the different gesture has different cluster 
trajectories even though different simple motion is in the same cluster.  We employ a 
Gaussian Mixture Model(GMM) to cluster the features so that each motion sequence 
corresponds to the trajectory in cluster. It means that gesture can be modeled by con-
secutive cluster trajectories belong to different elements of a GMM, which groups set 
of frames in different Gaussian distribution.  

We use the Expectation Maximization (EM) algorithm[7] to estimate the Gaussian 
Mixture Model of the data. Each cluster,C, indicates a region in the high dimension 

space that is represented by the centroid, sμ , and covariance matrix , sΣ . Given input 

data vector F, the distance from the data to the state S is define Mahalanobis distance. 
In the ideal case, each cluster is represented by a single Gaussian distribution.

Thus, a collection of k clusters can be represented by a mixture of k Gaussian distribu-
tion. Note that the clusters are not of equal size. After, the GMM parameters are esti-
mated, we compute a most likely cluster for each frame of the motion and the index of 
most likely cluster is observation symbol in HMM. 

Each gesture has its own gesture cluster index sequences. We show the examples 
of  gesture cluster index sequences. The different gesture has different cluster trajecto-
ries, on the other hand, same gesture has very similar trajectories  

},4,4,.1..9..9,9,...43,4,6,6,..1,3,1,...,2,4,4,4,4,{_ =GesutreWalking

.17,17,19}19,18,5,..3,3,3,6,..,1,6,...3,24,8,7,2,2{_ =GestureRunning

We have to specify the number of clusters, C, for each execution of the GMM, and 
we usually do not know the number of clusters in a data set. We fit it with C=25. This 
number seem to be useful for our data and fixing C such as 25 seemed to produce 
reasonable results without additional complexity. 

3   Gesture Recognition and Segmentation 

The main requirement for the use of gesture recognition in human-computer inter-
faces is a continuous online recognition with a minimum time delay of the recognition 
output (see Fig. 5). 
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Fig. 5. Spotting gestures in a continuous gesture stream 

However, such a system performance is extremely difficult to achieve, because 
the fact that the starting and ending point of the gestures is not known and it is a very 
complicated problem. This paper focus on the automatic finding the starting and 
ending point, called gesture spotting. Our method works with continuous gesture 
streams and allows an automatic temporal segmentation and recognition at a the 
same time. 

3.1   Gesture Recognition  

The HMM is rich in mathematical structures so that it has been widely used for many 
classification and modeling problems, especially, in the speech recognition and 
handwriting recognition.  We choose the HMM-based approach because it can be 
applied to analyze time-series with spatio-temporal variations and can handle unde-
fined patterns effectively.  

The HMM is a collection of states connected by transitions. Each transition has a 
pair of probabilities: a transition probability and an output probability. Following 
Rabiner paper [8], a compact notation  ={ A, B, } is used which includes only 
probabilistic parameters. Every Gesture is represented by each HMM probabilistic 
parameters, where M is the number of gestures 

The most general approach uses a fully-connected model. However, training of 
these models leads to ambiguous model with high entropy, not suitable for production 
purpose so that we design a model using the left-right HMM utilizing the temporal 
characteristics of gesture signals for each gesture. The left-right model is good for 
modeling order-constrained time-series whose properties sequentially change over 
time. The number of states in a model is determined based on the complexity of the 
corresponding gesture. The number of states in our gesture models ranges from five to 
eight, depending on the complexity of the gesture. The gesture models are trained 
using Baum-Welch reestimation algorithm. 

To recognize observed symbol sequences, we create HMM for each gesture. We 
choose the model which best matches the observations from gesture HMM cλ . This 

means that when a sequence of unknown category is given, we calculate the 
[ ]cMP λ|(  for each gesture and chose the HMM that has the highest value. Each ges-

ture is recognized in following equation. 

)]|([maxarg c
c

MpGesture λ= (1)

where c is the number of the gestures and M are observation sequences. 
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3.2   Key Gesture Spotting Network 

We construct the HMM gesture spotting network with two garbage models and one 
gesture HMM model. The first garbage model is in front of a gesture HMM to reject 
the non sub-pattern gestures which start before meaningful gesture. One gesture 
HMM and second garbage model is constructed together. 

For correcting gesture spotting, the likelihood of a gesture model, which is men-
tioned previous section, for a given pattern should be distinct enough. Unfortunately, 
although the HMM recognizer chooses a model with the best likelihood, we cannot 
guarantee that the pattern is really similar to the reference gesture unless the likeli-
hood value is high enough. Therefore, we propose a garbage model that gives confi-
dence measure to reject the non-gesture.  

The garbage models are made by gesture states. The HMM’s internal segmentation 
property implies that each state with its self-transition represents a segmental pattern 
of a target gesture and that outgoing transitions represents a sequential progression of 
the segments in a gesture.  

With this property, we can construct an ergodic model with the states copied from 
all gesture models in the system and then fully connect the state (see Fig 6). We con-
struct our garbage model as following step. 

First step: Self-transition probabilities are kept in the gesture models. 

Second step: Output observation probabilities(bj(k)) are copied from gesture models 
and we reestimate that probabilities with gaussian distribution smoothing. Gaussian 
smoothing of the output probabilities distribution makes the states represent any  
patterns. 

              2
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Third step: all outgoing transition probabilities are equally assigned as  
That equation means each state is reached by all other possible state in a single 

transition so that this garbage model is erogodic model which makes it match well 
with any patterns generate by combining the sub-patterns in any order. 

(3)

where anew_ij is the transition probabilities of garbage model from state si to state sj,
aold_ij is the transition probabilities of gesture model from state si to state sj, and N is 
the number of all gesture state. The start and final state produce no observation.  

The garbage model is used as a confidence measures for rejecting a non-gesture 
pattern. The confidence measure can be calculate using the garbage-model as an ap-
proximate of P(X) 

                  )|()( mod_ elgrabageXPXP λ= (4)
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Fig. 6. The garbage model 

Fig. 7. Gesture spotting network

where X are an input observation sequences, and elgarbage mod_λ  is an HMM parame-

ters of garbage model. Our HMM network is shown in fig. 7. The method, which 
spots a meaningful gesture pattern, will be described in next section.  

To find the single best state sequence, tt qqqQ ,...,, 21,1 =
for the given observa-

tion tt OOOO ,..., 21,1 = we need to define the quantity: 

with the highest probability along a single path arriving at si at time t and accounting 
for the first observation. If the sequence is non gesture pattern, it is filtered by the first 
garbage model.  

For the backtracking information, we use )( jtϕ  to keep the argument that maxi-

mizes it for each t and  j 

)|,,(max)( ,11,1
,1

λδ titt
tQ

t OsqQPi =≅ −
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where S is the number of state, and T is total time of input gesture. 
In case of null transitions,, the likelihood of the source state at time t is simply 

maximized without time delay as  
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Finally, to uncover the most likely state sequence Q*=q*1q*2…q*T after the preced-
ing computation, we must trace back to the initial state by following the Viterbi path. 
This algorithm described is known as Viterbi algorithm, and we refer the reader to [9] 
for algorithm details.  
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with the highest probability along a single path arriving at si at time t and accounting 
for the first observation. If gesture pattern starts, the log likelihood value of the ges-
ture HMM is above of confidence measure(P(X|Ggarbage_model)). We can use confidence 
measures as threshold.  

4   Experiments and Analysis 

4.1   Experimental Data 

The six gestures form the basis of the test gesture. These gesture data are selected from 
FBG database[10]. The FBG database contains 14 representative full-body gestures in 
daily life for 20 performers. This database consists of major three parts: 3D motion 
data, 2D stereo-video data and 2D silhouette data. The database has abundant variation. 

However, these data do not have enough variation to test our algorithm so that we 
generate the gestures. We calculated the eigen gesture vector per each gesture with 20 
performers using principal component analysis (PCA). After that, we generate the 
Gaussian random coefficient value and the combine the eigen gesture vector and 
Gaussian random coefficient value linearly (see fig. 8).  

4.2   Results 

We divide the gesture data into 50 training and 50 test data. The six gesture HMMs 
are trained with the isolated training gestures.  

In this method, we test the continuous gesture. The detection ratio is the ratio of 
correctly recognized gestures over the number of input gestures for evaluation of 
recognition algorithm: 

                                                                                                                                 (8) 
gesturesinputof#

gesturesrecognizedcorrectly of#
ratioDetection =
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Fig. 8. A diagram of generating the various gesture with gesture eigen vector 

We fail to recognize two running gesture because the gesture is smoothed too 
much so that the gesture is very similar to walking gesture. Our proposed method 
achieves an average recognition rate of 98.3%. 

The table 1 gives the average recognition accuracy obtained continuous gesture. 

Table 1. The result of gesture recognition 

Gestures 
The number  

of input  
gesture 

The number of Correctly 
recognized gesture 

Detection ratio 

Walking 50 49 98% 
Running 50 48 96% 
Bending 50 50 100% 
Jumping 50 49 98% 

Lying down on the floor 50 50 100% 
Waving a hand 50 50 100% 

In addition to gesture recognition, we also test the spotting algorithm in the con-
tinuous gesture input streams (see fig. 9). 

A time-evolution of the likelihood of individual model is shown in Fig. 10. From 0 
sec. to 9 sec., the likelihood of garbage model is high than that of other gesture mod-
els. There are no any meaningful gestures in this period so we reject this gesture. 
After time 9 sec., however, the likelihood of walking gesture model becomes the 
greater  than  that of the garbage model. When the likelihood of the key gesture model  
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(a) Non gesture sequences from 0 sec. to 9 sec.

(b) Walking gesture sequences from 9 sec. 19 sec. 

(c) Bending gestures sequences from 19 sec.  to 25 sec. 

Fig. 9. Continuous image streams with non-gesture and meaningful gestures 

Fig. 10. The likelihood evolution of the gesture models and the garbage model 

is above that of garbage model, the starting point is determined by backtracking the 
Viterbi path. This key gesture is segmented in this time period. Finally, the likelihood 
of bending gesture model from 19 to 25 is above other gesture models. In this period, 
we also segment bending gesture. We segment two different gesture, walking and 
bending gestures, and reject non-gestures. We measure our spotting algorithm evalua-
tion with reliability. The reliability is introduced that considers the insertion errors as 
follows.  
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(10)

The insertion error occurs when the spotter reports a nonexistent gesture. The  
deletion error occurs when the spotter fails to detect a gesture. The substitution error 
occurs when the spotter falsely classifies a gesture.  Table 2 shows the spotting  
performance with reliability.  

Table 2. Spotting results with reliability 

Gestures 
The number  

of input 
gesture 

The number 
of Correctly 
recognized 

gesture 

Delete 
errors 

Substitute 
errors 

Insertion 
errors 

Reliability 

Walking 58 55 0 1 2 91.6% 

Running 62 57 1 1 3 91.9% 

bending 54 54 0 0 0 100% 

Jumping 62 61 0 0 1 96.8% 

Lying on 
the floor 

61 58 0 1 2 92.1% 

Waving a 
hand 

60 58 0 1 1 95.1% 

total 357 343 1 4 9 93.7% 

5   Conclusion and Further Work 

This paper describes an HMM-based gesture recognition and segmentation with a 
GMM clustering and garbage model. The proposed method not only provides invari-
ance with respect to the speed of the movement because HMM can deal with time-
sequential data, but also covers the variation generated by multiple people because we 
use the cluster trajectory in which each cluster is described well by a Gaussian distri-
bution. The garbage model also provides a good confirmation mechanism for reject-
ing the non-gestures. 

In the future, we will extend to this algorithm to real image sequences. We will test 
more sophisticated and various body gestures. In addition, we embed this methodol-
ogy into a robot so that the robot can recognize the human body gesture, react it and 
help the old people when they fall down unexpectedly.  

Acknowledgement  

This research was supported by the Intelligent Robotics Development Program, one 
of the 21st Century Frontier R&D Programs funded by the Ministry of Science and 
Technology of Korea. 

errorsinsertionof#gesturesinputof#

gesturesrecognizedcorrectly of#
yReliabilit

+
=



 Gesture Spotting in Continuous Whole Body Action Sequences 111 

References 

1. Wilson, A.D., Bobic, A.F.,: Parametric Hidden Markov Models for Gesture Recognition. 
IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 21, No. 9, (1999), 884-
900

2. Vaananen, K., Boehm, K.,: Gesture Driven Interaction as a Human Factor in Virtual Envi-
ronments – An Approach with Neural Networks., Virtual Reality Systems, (1993), 93-106 

3. Starner, T., Weaver, J., Pentland, A.,: Real-Time American Sign Language Recognition 
Using Desk and Wearable Computer Based Video., IEEE Trans. on Pattern Analysis and 
Machine Intelligence, Vol. 20, No. 12, (1998), 1371-1375 

4. Quek, F.,: Toward a Vision-Based Hand Gesture Interface., Proc. of Virtual Reality Sys-
tem Technology Conf., Singapore, (1994) 17-29 

5. Kahol, K., Tripath, P., Panchanthan. S.,: Automated Gesture Recognition From Dance Se-
quences, Proc. of Int’l Conf. on Automatic Face and Gesture Recognition, Seoul, (2004),  
883-888. 

6. Yang H.-D., Park S.-K., Lee S.-W.,: Reconstruction of 3D Human Body Pose Based on 
Top-down Learning 

7. Duda, R., O. Hart, P.E. Stork, D. G.,: Pattern Classification. Wiley & Sons, New York 
(2001),  Proc. of  Int’l Conf. on Intelligent Computing, Hefei, (2005), To appear. 

8. Rabiner., L. R.,: A Tutorial on Hidden Markov Models and Selected Applications in 
Speech Recognition., Proc. of IEEE, Vol. 77 (1989) 257-286 

9. Viterbi, A. J.,: Error Bounds for Convolution Codes and an Asymptotically Optimum De-
coding Algorithm., IEEE Trans. on Information Theory, Vol. 13 (1967) 260-269 

10. Hwang B.-W., Kim S.-M., and Lee S.-W.,: 2D and 3D Full-Body Gesture Database for 
Analyzing Daily Human Gestures., Proc. of  Int’l Conf. on Intelligent Computing, Hefei, 
(2005), To appear. 



Recognition of Deictic Gestures
for Wearable Computing

Thomas B. Moeslund and Lau Nørgaard

Laboratory of Computer Vision and Media Technology,
Aalborg University, Denmark

tbm@cvmt.dk

Abstract. In modern society there is an increasing demand to access, record and
manipulate large amounts of information. This has inspired a new approach to
thinking about and designing personal computers, where the ultimate goal is to
produce a truly wearable computer. In this work we present a non-invasive hand-
gesture recognition system aimed at deictic gestures. Our system is based on the
powerful Sequential Monte Carlo framework which is enhanced with respect to
increased robustness. This is achieved by using ratios in the likelihood function
together with two image cues: edges and skin color. The system proves to be
fast, robust towards noise, and quick to lock on to the object (hand). All of which
is achieved without the use of special lighting or special markers on the hands,
hence our system is a non-invasive solution.

1 Introduction

In modern society there is an increasing demand to access, record and manipulate large
amounts of information involved in many aspects of professional and private daily life.
This has inspired a new approach to thinking about and designing personal computers,
where the ultimate goal is to produce a truly wearable computer. Wearable in the sense
of being a natural extension of the body like clothes, shoes or glasses. A brief historic
overview of wearable computing is listed below, see [11] for further details.

1268 Earliest recorded mention of eyeglasses
1665 Robert Hooke calls for augmented senses
1762 John Harrison invents the pocket watch
1907 Aviator Alberto Santos-Dumont commissions the creation of the first wristwatch
1960 Heilig patents a head-mounted stereophonic TV display
1960 Manfred Clynes coins the word ”Cyborg”
1961 Edward O. Thorp and Claude Shannon (MIT) builds the first wearable computer,

which is used to predict roulette wheels
1966 Ivan Sutherland creates the first computer-based head-mounted display (HMD)
1977 Hewlett-Packard releases the HP 01 algebraic calculator watch
1979 Sony introduces the Walkman
1981 Steve Mann designs backpack-mounted computer to control photographic equip-

ment

S. Gibet, N. Courty, and J.-F. Kamp (Eds.): GW 2005, LNAI 3881, pp. 112–123, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Recognition of Deictic Gestures for Wearable Computing 113

1985 (Wearable) Device for prediction or card counting in casino games were outlawed
in the state of Nevada

1989 Private Eye’s HMD sold by Reflection Technology
1991 Doug Platt debuts his 286-based ”Hip-PC”
1991 Carnegie Mellon University (CMU) team develops VuMan 1 for viewing and

browsing blueprint data
1993 Thad Starner starts constantly wearing his computer, based on Doug Platt’s design
1993 Feiner, MacIntyre, and Seligmann develop the KARMA augmented reality system
1994 Lamming and Flynn develop ”Forget-Me-Not” system, a continuous personal

recording system
1996 Boeing hosts “Wearables Conference” in Seattle
1997 CMU, MIT, and Georgia Tech co-host the first IEEE International Symposium on

Wearable Computers
1997 First Wearable computer fashion show at MIT

1.1 Related Work

A number of different devices have been developed or adopted to the special user
interface requirements in wearable computing [9]. Depending on the context the
requirements differ. However, one common issue in most wearable computing inter-
faces is the need for a pointing device, similar to the computer mouse used in standard
WIMP interfaces. Without it, precise deictic interaction is either not possible or very
cumbersome.

The most common way of achieving this is by the use of a data glove, see e.g., [10].
Glove-based methods are by nature intrusive and besides often too expensive and bulky
for widespread use [13]. Other intrusive devices which have been used to provide de-
ictic input are bend sensors [13], ultrasonic devices [4], and accelerometers [13]. Less
intrusive methods are based on head-mounted cameras segmenting the hand(s) in the
image. Compared to some of the more intrusive devices cameras in general produce
poor signal-to-noise ratios and therefore either infrared light and cameras, see e.g., [14]
and [12], or markers on the hands/fingers, see e.g., [10], are used. For further informa-
tion on state-of-the-art see [8].

1.2 The Content of This Paper

The aim of this paper is to develop a head mounted camera-based gesture interface
for wearable computing that neither requires special lighting (infrared) nor markers
attached to the hands/fingers. Our approach is to adopt an advanced tracking framework:
the Sequential Monte Carlo (SMC) method [3], which is often used in the computer
vision research field, see e.g., [5][1][2], and tailor it to the needs originating when the
camera is head mounted.

The paper is structured as follows. In section 2 the gestures are defined and a repre-
sentation is derived. In section 3 the tracking framework for the gesture recognition is
presented. In section 4 and section 5 the recognition of the pointing gesture is described.
In section 6 the system is tested and in section 7 a conclusion is given.
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2 Modeling the Pointing Gesture

We require two gestures to be recognizable, pointing and clicking. The former is de-
fined as an outstretched index finger and thumb with all other fingers bend. The latter is
defined in the same way except that the thumb is now held against the index finger, see
figure 1. As only the movement of the thumb is modeled explicitly and the other fingers
are kept still or hidden, the range of internal motion is limited to the three joints of the
thumb, see figure 1. As the DIP (Distal Interphalangeal) joint is always outstretched
when doing the click gesture, and since the MCP (Meta CarpoPhalangeal) joint is diffi-
cult to bend independently of the CMC (Carpal MetaCarpal) joint, the two gestures can
be represented and distinguished by one only one rotational DoF (degree of freedom).

Fig. 1. A hand showing the point gesture. Left: X-ray image. Right: B-spline approximation of
the contour. Control points are marked with circles.

We represent the appearance of the two gestures by the contour of the hand, see
figure 1. The contour is manually created using B-splines defined by a set of control
points. Applying a linear transformation to these points is the same as applying the
transformation to the B-splines.

To create the set of two basis splines required to model the two gestures, a spline was
first fitted to an image of the pointing gesture and saved to an ASCII file. Then an image
with the hand in the same position but showing a clicking gesture was loaded, and the
control points moved to make the spline follow the thumb. These two splines were then
loaded into the tracker and combined using linear interpolation. So one parameter, φ,
controls the internal DoF in our hand model.

Regarding the external DoF for the hand model, we assumed weak perspective trans-
formation and applied an affine transformation. So the final external transformation of
the B-spline contour is given as:

r(s) =
[
dx

dy

]
+
[

sx cos(θ) a sy cos(θ) − sy sin(θ)
sx sin(θ) a sy sin(θ) + sy cos(θ)

]
r0(s) (1)
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where r0(s) is the set of untransformed control points representing the contour of the
hand, r(s) is the set of affine transformed control points, dx and dy define the translation
in the image plane, sx and sy define the scaling in the image plane, a is the shear, and
θ is the rotation in the image plane.

In total we ended up with 7 DoF, one internal and six externals. That is, our state-
space is seven-dimensional and one configuration of the hand is defined by the state
vector, x, as:

x = (dx, dy, θ, sx, sy, a, φ) (2)

where φ is the angle between the index finger and the thumb.

3 Tracking Framework

Due to the low signal-to-noise ratio mentioned in section 1.1 the hand can not always
be segmented perfectly from the background. Hence, the recognition in a particular
frame will not always be unique, or in statically terms, the conditional probability of a
gesture given the image measurements will in general be multi modal. This calls for a
Sequential Monte Carlo (SMC) method which can handle such situations [3]. The SMC
algorithm operates as most other tracking frameworks, by using a predict-match-update
structure.

The SMC is defined in terms of Bayes’ rule and by using the first order Markov
assumption. That is, the posterior PDF (probability density function) is proportional to
the observation PDF multiplied by the prior PDF, where the prior PDF is the predicted
posterior PDF from time t − 1:

p(xt|ut) ∝ p(ut|xt)p(xt|ut−1) (3)

where x is the state and u contains the image measurements. The predicted posterior
PDF is defined as

p(xt|ut−1) =
∫

p(xt|xt−1)p(xt−1|ut−1) dxt−1 (4)

where p(xt|xt−1) is the motion model governing the dynamics of the tracked object,
i.e., the prediction, and p(xt−1|ut−1) is the posterior PDF from the previous frame.

This formula is exactly what we are after, as it imposes no constraints on the posterior
PDF, as for example the Kalman filter does. However, even with a coarse resolution for
the different parameters in the state vector (both internal and external DoF), too many
combinations exist and it is not computationally feasible to evaluate the integral in equa-
tion 4. Therefore, the SMC algorithm approximates the posterior by only sampling the
N most appropriate combinations. In praxis this is done by estimating p(xt|ut) by se-
lecting a number, N , of (hopefully) representative states (particles) from p(xt−1|ut−1),
predicting these using p(xt|xt−1), and finally giving each particle a weight in accor-
dance with the observation PDF, p(ut|xt). For the next time step N new particles are
drawn from the existing set with probabilities proportional to the calculated weights.

This approach will concentrate most particles around the likely hypotheses, but since
the prediction contains both a deterministic and a stochastic element, some particles will
also spread out randomly making the SMC algorithm able to cope with unpredicted
events.
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4 Motion Model

In order to apply the SMC method we need to be able to predict a state vector over time.
In this section the motion model, which implements the prediction, is defined.

We assume the individual dimensions in the state space are independent, and can be
modeled by first order auto-regressive (AR) processes:

xt − x = a(xt−1 − x) + bwt ⇔ xt = x + a(xt−1 − x) + bwt (5)

where xt is the value at time t, x is the mean or expected value and wt is a random
variable with distribution N (0, 1).

The only exception is x and y translation, dx and dy , which are modeled by second
order AR processes with constant velocity:

xt = xt−1 + (xt−1 − xt−2) + bwt (6)

Consequently there are 12 motion constants to be determined during training. In
addition, the mean and standard deviation for each dimension are also calculated in
order to determine the a priori distributions used in the initialization of the SMC tracker
[9].

The motion model and initialization assume the value and step size along each di-
mension of the state space to be normally distributed except dx and dy which are as-
sumed uniform. Test justify these assumptions except for the value of the thumb angle,
φ, which is not normally distributed [9]. Its histogram has two distinct modes at posi-
tions corresponding to the point and click gestures. We handle this by modeling the two
modes by two first order AR processes, as in equation 5, and extend the state vector
with a variable indicating the current mode (gesture) [6]:

x′ = (x, γ) , γ ∈ {1, 2} (7)

The motion model for the thumb angle is modified to include the modes:

p(φt|φt−1) = p(φt|γt, φt−1)p(γt|φt−1) (8)

where p(φt|γt, φt−1) is one of the two AR processes and p(γt|φt−1) is the probability
for a gesture given the angle value in the last frame xt−1. This last probability represents
the knowledge of when the hand changes from one gesture to the other. This model will
accurately follow the movement of the thumb through fast clicks with a reasonable
amount of particles. Note that the representation in equation 7 means that the gesture
recognition problem becomes an explicit part of the tracking process, i.e., when the
tracking is correct so is the recognized gesture.

5 Likelihood Function

When the contour description of the tracked object has been created and the changes in
state from frame to frame can be predicted, comparing the predicted contours with the
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actual images is the next step. In the SMC tracker this is represented by the observation
PDF described in this section.

This comparison is accomplished by locating edges in the image and examining
how well each predicted contour corresponds to these edges. The edges are located by
searching along a number of normals to the contour. Edges detected on the normals
are referred to as features. The function that measures the correspondence is called a
likelihood function and defined via a generative model.

In this section we describe a generative model inspired by the order statistic likeli-
hood in [7]. However, where the order statistic likelihood only counts the total number
of features found along the different normals, the likelihood proposed in this section will
utilize individual counts of interior and exterior features, see figure 2, and we hereby
obtain an IEOS (interior-exterior order statistic) likelihood function.

m n

Interior Exterior

v

Fig. 2. Illustration of the different types of features. m is the number of features inside the hand,
n is the number of features in the background, and v is the position of the feature nearest to the
contour.

Both exterior and interior features are assumed to be generated by two individual
Poisson processes with density parameters λ and μ, respectively. As no a priori knowl-
edge exist regarding local properties of the background λ is considered constant over
the entire image. μ may vary between normals to model the presence of known interior
features. The density for the individual normals μi can be learned from training data.
The probability bL(n) of finding n features on a piece of a measurement line of length
L placed on the background is:

bL(n) = e(−λL) (λL)n

n!
(9)

Similarly the probability of detecting m features on a piece of a measurement line
of length L lying entirely inside the object at the position of normal number i is:

fL,i(m) = e(−μiL) (μiL)m

m!
(10)

The positions of the n exterior features {b1, b2, . . . bn} or the m interior features
{c1, c2, . . . cm} are considered uniformly distributed.
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The edge of the hand is assumed to produce a single feature with a position normally
distributed around the center of the normal. There is a fixed probability q0 of this feature
not being detected.

The generative model for the i’th normal with length L can be defined as:

1. Draw a from the truncated Gaussian

G(a) =

{
ce(− a2

2σ2 ) , for a ∈ [−L/2; L/2]
0 , otherwise

(11)

where a is the distance from the correct edge (originating from the hand) to the
center of the normal, σ is found during training, and c is set so that the CDF (cu-
mulative density function) of G(a) integrates to one.

2. Draw d randomly from {True, False} with probabilities 1 − q0 and q0, respec-
tively. d represents whether the edge of the object was detected or not.

3. Draw the number of interior features m randomly from fL/2+a,i(m), and draw
their positions {c1, c2, . . . cm} from Rect[−L/2, a].

4. Draw the number of exterior features n randomly from bL/2−a(n), and draw their
positions {b1, b2, . . . bn} from Rect[a, L/2].

5. If d is True:
(a) Set v to the position of the most central feature in the set {c1, c2, . . . cm, a, b1,

b2, . . . bn}.
If d is False:
(a) Set v to the position of the most central feature in the set {c1, c2, . . . cm, b1,

b2, . . . bn}.
(b) If v ∈ {c1, c2, . . . cm}: Set m = m -1. Otherwise: Set n = n - 1

6. Report {v, m, n}.

The derivation of the likelihood function is divided into the two cases. One where
the object edge is detected (d = True) and one where it is not (d = False).

5.1 Edge Not Found (d = False)

As v is the distance to the center of the most central of the m + n + 1 features found,
all other features must have a distance greater than or equal to v. The PDF for the
position of the most central feature can not be found directly. It will be established by
determining the corresponding CDF and then differentiating.

The probability of the distance from the center to a single feature being greater than
or equal to y is1:

P (|v| ≥ y) = (1 − y2/L) (12)

As the positions of the features are assumed independent, the combined probability, that
k features all lie at distances from the center greater than or equal to y, can be calculated
as a product of the k individual probabilities:

P (|v| ≥ y) = (1 − y2/L)k (13)

1 For the following four equations: y ∈ [0; L/2].
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The CDF F (y) for the position of the most central of k features from a uniform distri-
bution can be found from equation 13:

F (y) = P (|v| ≤ y) = 1 − (1 − y2/L)k (14)

Differentiating 14 with regard to y yields:

d

dy
F (y) =

d

dy
(1 − (1 − y2/L)k) =

2k

L
(1 − y2/L)k−1 (15)

As |v| will always be in the interval [0; L/2], the resulting PDF is:

p(v|d = False) =
2k

L
(1 − |v|2/L)k−1 (16)

The probability of getting m interior- and n exterior features on the i’th normal, if it is
centered on the border of the object, can be calculated as:

pi(m, n|d = False) = fL/2,i(m)bL/2(n) (17)

The distance from the center of the normal from the most central feature v is not
used, as this feature is known to be either an interior or exterior feature and not from
the edge of the object. However it is not accounted for in m or n, and it will have to be
added to the right category. If the feature at v lies on the interior part of the normal, it
should count as an interior feature or as an exterior feature if it lies on the outside part.
That is if v < 0 then set m = m + 1 otherwise set n = n + 1. Adding this to equation
17 yields:

pi(m, n|d = False, v) =

{
fL/2,i(m + 1)bL/2(n) , if v < 0
fL/2,i(m)bL/2(n + 1) , if v ≥ 0

(18)

Equations 16 and 18 can be combined to form the likelihood that the i’th normal,
centered on the border of the object, will produce m + n + 1 features where the most
central is at position v:

pi(v, m, n|d = False) = pi(m, n|d = False, v)p(v|d = False) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
fL/2,i(m + 1)bL/2(n)2(m+n+1)

L ·
(1 − |v|2/L)m+n , if v < 0

fL/2,i(m)bL/2(n + 1)2(m+n+1)
L ·

(1 − |v|2/L)m+n , if v ≥ 0

(19)

The procedure for the case where the edge is found on the contour (d = True)
follows a similar pattern [9] and results in:

pi(v, m, n|d = True) =
(

2(m + n)
L

(1 − |v|2/L)m+n−1
(

1 −
∫ |v|

−|v|
G(a)da

)
+2(1 − |v|2/L)m+nG(|v|)

)
fL/2,i(m)bL/2(n) (20)
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where v is the distance from the center of the normal to the most central feature. Com-
bining equations 19 and 20 we obtain the IEOS likelihood function for the i′th normal:

pieosi(x) = pi(v, m, n) =
q0pi(v, m, n|d = False) + (1 − q0)pi(v, m, n|d = True) (21)

Assuming independence of the normals, the likelihood of the entire contour corre-
sponding to the state vector x′ is:

Pieos(x′) =
M∏
i=1

pieosi(x
′) (22)

where M is the total number of normals on the contour investigated for one predicted
particle (state). Equation 22 is too long to be stated in its entirety, and consequently
seems to be a very costly expression to evaluate. However, this is not the case as most
terms can be reduced to lookup tables [9].

5.2 Creating a Likelihood Ratio

The generative models described in the previous section form the basis for the contour
likelihood functions. They can, however, also be used to derive background likelihood
functions, that is, functions expressing the likelihood that a given set of features was
produced by the background. Based on the generative model for the IEOS likelihood
function the background likelihood for a single normal will be:

p0 = bL(f)
2(f)
L

(1 − |v|2/L)m+n (23)

where f = m + n + 1. The corresponding likelihood for all M normals on the entire
contour is:

Bieos(x′) =
M∏
i=1

bL(fi)
2(fi)

L
(1 − |vi|2/L)mi+ni (24)

where fi = mi +ni +1. The likelihood function can now be expressed as a ratio which
is more robust to noise:

Rieos(x′) =
Pieos(x′)
Bieos(x′)

(25)

5.3 Adding Color Information

In order to improve the likelihood function we learn the hue and saturation values of
hands and model the colors by a Gaussian distribution. The distribution in the back-
ground is assumed to be uniform over both hue and saturation. Given these assump-
tions we can derive a color based ratio between the likelihood of a contour matching
and the likelihood of the contour being located on a random background [9]. This
color based likelihood ratio is denoted Rcolor(x′) and together with equation 25 it
forms the final likelihood function used in this work:

Bieosc(x′) = Rieos(x′)Rcolor(x′) (26)
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6 Results

The HW used to test our system was the Sony Glasstron PLM-S700E HMD, a Philips
ToUcam Pro USB mounted on the HMD, and a Windows PC with AMD Athlon 2100+
and 512 MB RAM. With this HW we recorded different test sequences each having dif-
ferent characteristics among the following: translation and rotation of the hand [slow,
moderate, fast, very fast], head movement [none, slow, fast], illumination [indoor, out-
door, mixed], and background [uniform wall, wooden table, very cluttered desk].

In general the tracking of the hand and the recognition of the current gesture works
well and especially the index finger is tracked reliably. In figure 3 successful tracking is
illustrated for a challenging sequence with very cluttered background, fast hand move-
ments, and additional hands entering the scene. The very fast motion of the hand and
head combined with low lighting conditions cause a high level of motion blur resulting
in weak edges. For a few frames with excessive motion blur, the tracker reports an erro-
neous position of the hand. However, track of the hand is not lost due to the stochastic
nature of the SMC framework, and precise lock is regained only two frames later.

Fig. 3. Images form a test sequence. The state of the tracker at a particular frame is calculated as
the weighted average of all particles and overlaid in the figure.

The speed of our system depends primarily on the number of particles required to
get a robust tracking. This number in general varies in accordance with the complexity
of the scene. For our test sequences the number of required particles is between 100 and
600. This corresponds to a frame rate of 100Hz to 12Hz, which for this application can
be considered real-time.

In order to get quantitative results we compared the estimated state (contour) with
hand-segmented data and calculated the difference. In average the mean pixel error and
standard deviation are around 8 and 3 for the point gesture, respectively, and around 5
and 3 for the click gesture, respectively. This is found to be usable for most interface
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purposes. To stress this point we made a qualitative test where test persons were asked
to control the interaction with the game pieces while playing Tic-Tack-Toe against the
computer. On a uniform background the game is definitely playable. A few erroneous
clicks appeared when playing on a cluttered background, especially in combination with
fast hand movements. These clicks were few and could for the most parts be eliminated
by a temporal filter.

Fast head motion was in general not a problem. It was observed, that during interac-
tion the hand was kept relatively steady wrt to the head. It seems not plausible to move
the head independently of the hand while pointing at something shown on the HMD.

Another very interesting issue to test is the benefits of including color information
into the likelihood function. As the tracker always produces an output, i.e., a best state
of the object at a particular frame, we made a sequence where the hand moves in and out
of the field of view. In figure 4 the likelihoods of the best state with (left) and without
(right) color information are shown. The exact values of the likelihoods are difficult to
interpret as they depend on the appearance of both the object and the background. But
it is evident that when the hand is not in the image (indicated by the dots) the likelihood
values drop significantly when color information is used. This seems reasonable as the
background is not likely to contain any hand-colors in the shape of a hand. In other
words, our likelihood function provides a better signal-to-noise ratio for the system,
and hence a better tracking result.
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Fig. 4. The likelihood functions (left: equation 26, right: equation 22) as a function of the frame
number. The black dots indicate when the hand enters the field of view while the black/white dots
indicate when the hand leaves the field of view.

The clear difference in the values as a function of whether the tracker has locked on
an object or not can also be used to decide when the tracker should re-initialize, i.e.,
use more particles or draw particles randomly from the a priori distribution. Further-
more, the steepness of the transitions in the left figure illustrates how fast the tracker
regains lock when the hand reappears. In quantitative terms, the average number of
frames required to regain lock is 4 for a uniform background and 7 for a cluttered back-
ground.
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7 Conclusion

We have presented a non-invasive hand-gesture recognition algorithm for wearable
computing. The recognized gestures are point and click gestures which are essential
in virtually all interfaces where deictic information is required. Our algorithm is based
on the powerful SMC tracker which can handle multiple hypotheses in the search space.
In order to increase the robustness of the tracker we use ratios in the likelihood function
and base it on two image cues which can complement each other: edges and skin color.
The likelihood function proves to be very robust towards noise as illustrated in figure 3.
Furthermore, as illustrated in figure 4 the algorithm locks on to the object very quickly
and gives a clear indication of whether the hand is present in the frame or not.

The above mentioned characteristics combined with the speed of the algorithm and
the user feedback allow us to conclude that we have developed a powerful deictic inter-
face for wearable computing, and that is without requiring special lighting or markers
on the hands or fingers, hence our system is a non-invasive solution.
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Abstract. We introduce the use of appearance-based features, and tan-
gent distance or the image distortion model to account for image variabil-
ity within the hidden Markov model emission probabilities to recognize
gestures. No tracking, segmentation of the hand or shape models have to
be defined. The distance measures also perform well for template match-
ing classifiers. We obtain promising first results on a new database with
the German finger-spelling alphabet. This newly recorded database is
freely available for further research.

1 Introduction

Work in the field of vision-based gesture recognition usually first segments parts
of the input images, for example the hand, and then uses features calculated
from this segmented input like shape or motion. Problems with this approach
are tracking, occlusion, lighting or clothing constraints. Results in the field of
object recognition in images suggest that this intermediate segmentation step
is not necessary and even hindering, as e.g. segmentation or tracking is never
perfect. The question addressed in our research is if appearance based features
are competitive for gesture recognition and if we can use similar models of image
variability as in object recognition. We have integrated distance measures known
from image and optical character recognition (e.g. being invariant against affine
transformations) into the hidden Markov model classifiers.

Most of the common systems [2, 8, 9, 10] assume a constant environment, e.g.
persons wearing non-skin-colored clothes with long sleeves and a fixed camera
position under constant lighting conditions. The presented systems are often
highly person-dependent and the gestures used exhibit great differences to be
easily recognizable. We aim at overcoming these shortcomings with this work.

2 Appearance-Based Features for Gesture Recognition

In appearance-based approachs the image itself and simple transformations (fil-
tering, scaling, etc.) of the image are usually used as features. In this paper, we
denote an original image X in a sequence at time t = 1, ..., T by Xt, and the
pixel value at the position (x, y) by Xt(x, y).

S. Gibet, N. Courty, and J.-F. Kamp (Eds.): GW 2005, LNAI 3881, pp. 124–128, 2006.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 1. Infrared images of the gesture “Five”. (a)-(d): original and spatial derivatives
image features. (e)-(g) are examples of the i6-Gesture database.

When working, for example, with gray valued images (e.g. infrared images like
in Fig. 1(c)), original images or their spatial derivatives can be used as features.
Skin probability images have been created according to their skin probability
maps [5]. Other features have been analyzed in [3].

3 Hidden Markov Models

The ability of hidden Markov models (HMM) to compensate time and ampli-
tude variations has been proven for speech recognition, gesture recognition, sign
language recognition and human actions [4, 8, 9, 10]. In particular we focus on
distance measures being invariant against slight affine transformations or distor-
tions. The idea of a HMM is to represent a signal by a state of a stochastic finite
state machine. A more detailed description can be found in [4].

In each state s of an HMM, a distance is calculated. We assume pooled vari-
ances over all classes and states, i.e. we use σsdk = σd. The negative logarithm of
p(X |s) can be interpreted as a distance d(p(X |s)) and is used as emission score:

− log(p(X |s)) =
1
2

(
D∑

d=1

((
Xd − μsd

σd

)2

︸ ︷︷ ︸
distance

+ log(2πσ2
d)︸ ︷︷ ︸

normalization factor

))

When working with image sequences, we calculate a distance between two
images, e.g. we compare the current observation image Xt (or any transformed
image X̃t) with the mean image μs at this state. Simply comparing the pixel
values is quite often used in object recognition but different methods have been
proposed to do this.

Tangent Distance. Because the Euclidian distance does not account for affine
transformations such as scaling, translation and rotation, the tangent distance
(TD), as described in [7], is one approach to incorporate invariance with respect
to certain transformations into a classification system. Here, invariant means
that image transformations that do not change the class of the image should
not have a large impact on the distance between the images. Patterns that all
lie in the same subspace can therefore be represented by one prototype and the
corresponding tangent vectors. Thus, the TD between the original image and
any of the transformations is zero, while the Euclidean distance is significantly
greater than zero.



126 P. Dreuw et al.

Image Distortion Model. The image distortion model [6] is a method which
allows for small local deformations of an image. Each pixel is aligned to the
pixel with the smallest squared distance from its neighborhood. These squared
distances are summed up for the complete image to get the global distance. This
method can be improved by enhancing the pixel distance to compare sub images
instead of single pixels only. Further improvement is achieved by using spatial
derivatives instead of the pixel values directly.

4 Databases

LTI-Gesture Database. The LTI-Gesture database was created at the Chair of
Technical Computer Science at the RWTH Aachen [1]. It contains 14 dynamic
gestures, 140 training and 140 testing sequences. An error rate of 4.3% was
achieved on this database. Fig. 1(c) shows an example of a gesture.

i6-Gesture Database. We recorded a new database of fingerspelling letters
of German Sign Language. Our database is freely available on our website1.
The database contains 35 gestures and consists of 700 training and 700 test se-
quences. 20 different persons were recorded under non-uniform daylight lighting
conditions, without any restrictions on the clothing while gesturing. The gestures
were recorded by one webcam (320x240 at 25 fps) and one camcorder (352x288 at
25 fps), from two different points of view. Fig. 1(e)-Fig. 1(g) show some examples
of different gestures. More information is available on our website.

5 Results

In [1], an error rate of 4.3% has been achieved using shape and motion features in
combination with forearm segmentation. Using the centroid features as presented
in [8], we have achieved an error rate of 14.2%, and we can conclude that these
features should only be used to describe motion patterns instead of more complex
hand shapes. Using original image features on the LTI-Gesture database, we have
achieved an error rate of 5.7% which has been improved to 1.4% in combination
with the tangent distance [3] or the image distortion model (see Tab. 1).

Table 1. Error rates [%] on the LTI-Gesture database

Features Euclidian Tangent IDM

COG [8] 14.2 – –
original 5.7 1.4 1.4
magnitude Sobel 7.1 1.4 1.4

On the i6-Gesture database, we have used only the webcam images to test our
system. It is obvious that this database contains gestures of very high complexity,
and that additional methods are needed for feature extraction or other distance
1 http://www-i6.informatik.rwth-aachen.de/∼dreuw/database.html
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measures. Using a camshift tracker to extract position independent features (note
that we do not try to segment the hand), we could improve the error rate from
87.1% to 44.0%.

Using a two-sided tangent distance we have improved the error rate to the
currently best result of 35.7%, which shows the advantage of using distance mea-
sures that are invariant against small affine transformations and the possibility
of recognizing gestures by appearance-based features (see Tab. 2).

Table 2. Error Rates [%] on the i6-Gesture database

Feature Euclidian Tangent

original thresholded by skin color prob. 87.1 -
+ camshift tracking (no segmentation) 44.0 35.7

6 Conclusion

At this point, some questions still remain unanswered, e.g. not all distance mea-
sures and camera streams were completely analyzed on the i6-Gesture database
which are expected to improve the error rate. The best achieved error rate on the
i6-Gesture database is 35.7% and shows the high complexity of this database.
Nevertheless, this result is promising because only a simple webcam without any
restriction for the signer has been used and some signs are visually very similar,
as for example the signs for “M”, “N”, “A”, and “S”.

The use of tangent distance and image distortion models as appropriate mod-
els of image variability in combination with appearance-based features has been
investigated and compared to the Euclidian distance on other databases. Using
these distance measures, the error rate has been reduced on all regarded data-
bases, especially on the LTI-Gesture database. This shows the power of integrat-
ing these distance measures into the HMM emission probabilities for recognizing
gestures.
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Abstract. In this paper we describe O.G.R.E - Open Gestures Recognition En-
gine, a general purpose real time hand gesture recognition engine based on 
Computer Vision, able to support gesture-based communication as a modality 
of Human-Computer Interaction. The engine recognizes essentially, static poses 
of a single hand and, hand trajectory paths in simple geometrical shapes. 

1   The O.G.R.E System Architecture 

The O.G.R.E computing architecture (Fig. 1), requires a single video camera that 
captures de user’s hand motion [1] and recognizes, in real time, a set of known hand 
poses or other types of gestures that can be used in any type of final application that 
may require this type of HCI modality, offering the possibility to trigger user-
specified actions, activated by different hand gestures.  The system initially removes 
the background of captured images, eliminating irrelevant pixel information, adapting 
itself both to changes in the lighting conditions and to the background scenario and 
detecting the moving foreground. The human hand is then segmented and its contours 
localized (in the image and vector spaces), while being also subjected to a noise re-
duction algorithm. From these contours, significant image or vector-based metrics are 
derived, allowing a search in a pre-defined generic or personal static hand poses’ 
library, where each pose is previously converted into a set of metric values. The en-
gine recognizes also trajectory paths, based in calligraphic interface techniques and, 
staged paths, hybrid gestures composed of both static poses and hand trajectories. To 
facilitate and simplify the use of gestures as an HCI modality by the host applications, 
the engine introduces the notion of Actions, an XML description of a hierarchy struc-
ture of contexts, which limits gesture recognition to a contextualized subset of possi-
ble gestures, of a given type (static, trajectory or staged path). 

The essential modules of the architecture are the following:  

Background subtraction (Fig. 2): This is applied prior to any subsequent processing. 
It consists of a calibration period during which maximum and minimum per- 
pixel  values  in  the YCrCb domain are stored and updated. Subsequently, foreground  
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Fig. 1. OGRE system architecture 

    

Fig. 2. Subtracting the background. From left to right: The original background; A user in the 
foreground; Resulting background subtraction mask; Subtracted background. 

 

Fig. 3. Extracting the hand contour. From left to right: the CAMSHIFT algorithm histogram 
back projection result; Result after YCrCb re-sampling; Result after morphological smoothing; 
Result after contour vectorisation and mixture with the foreground image. 

classification occurs, based on simple comparison between actual frame pixels’ 
YCrCb values and the stored background model, since it is assumed that variations of 
actual frame pixels’ YCrCb values below the stored minimum or above the stored 
maximum, classify these as foreground pixels.  

Background Analysis: This module is responsible for background deterioration de-
tection. It has been observed that the background subtraction algorithm used is not 
resilient to environmental changes, such as light fading, scene decorative objects 
replacement and camera positioning instability.  
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Color Tracking: Hue values obtained in the previous YCrCb color sampling phase, 
feed the CAMSHIFT (Continuously Adaptive Mean Shift) algorithm [2], which is 
then applied to the current captured image. The CAMSHIFT algorithm computes a 
histogram back projection binary image. The algorithm works in the sub-sampled 
chrominance domain, representing areas of a specified tonality (the hand tonality, in 
our case, which is a parameter of the system). It also reduces the hand pose searching 
area to the largest connected component representing the user’s hand hue. Hand track-
ing is therefore guaranteed in the following frames (Fig. 3). 

Hand Extraction: The CAMSHIFT algorithm identifies the largest connected com-
ponent‘s bounding box in the histogram back projection image, but it often covers an 
insufficient area of it’s whole. A recursive algorithm is applied to determine the real 
bounding box, simply enlarging its sides by small amounts and checking if it is al-
ready large enough to cover the object’s area. The resulting binary image is then used 
as a mask for YCrCb color space re-sampling, applied to the initial image with the 
background removed. Luminance and chrominances are sampled at different resolu-
tions in order to achieve the best possible contour detail. A smoothing morphological 
operation is then applied with an adequate structural filtering element for noise reduc-
tion. This element’s dimensions can be of 5x5, 7x7, 9x9 or 11x11, depending in the 
estimated silhouette dimension. 

Contour Handling: The extracted hand contour is converted to the vector form and, 
if necessary, a polygonal approximation sensitive to finger curvature is applied. This 
approximation is based on the best fit ellipse mathematical approach, as to obtain a 
measure of the curvature of a given set of points, proportional to the ellipse eccentric-
ity. This module offers contour handling operations as to achieve an appropriate hand 
silhouette representation. 

XML Parsing: This module is responsible for configuration, gestures and actions 
definitions parsing, as defined in a XML file. 

Management: This module is the engine’s core “intelligence”. It analyses specific 
action context and redirects gesture recognition into the adequate system module: 
Static Pose Recognition, Simple Path Recognition or Staged Path Recognition. 

Static Hand Pose Recognition: The extracted hand silhouette is compared against a 
library of silhouettes templates or a library of silhouettes signatures (depending in the 
method), using one of the below listed algorithms. In each case, proper formats for 
hand contour are used, since either we are dealing with image-based or vector-based 
contour analysis: 

• Image Based Analysis: (1) Template Matching: Based in the convolution be-
tween two images at several scales in order to find a given template; (2) Discrete 
Cosine Transform Analysis: A scale and rotation independent domain transfor-
mation in the frequency domain. 

• Contour Based Analysis: (3) Hu Moments: These are a set of shape characteris-
tic invariant metrics that can be useful for shape classification; (4) Pair-wise 
Geometrical Histogram (PGH): This method, computes the Histogram of dis-
tances and angles between the contour polygon’s edges, which provides us with a 
unique contour signature; (5) Simple Shape Descriptors (SSD): Combined simple 
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geometrical metrics, which helps describing shapes; (6) PGH-SSD Hybrid: This 
method corresponds to the author’s effort in combining PGH and SSD advan-
tages; (7) CALI [3]: This is an open source software library, based in Fuzzy Logic, 
used normally to recognize sketched shapes in the context of calligraphic inter-
faces. The technique may bring advantage in the recognition of static hand poses, 
by introducing a probabilistic methodology in the recognition technique. It is 
based in a set of geometric measures and simple shape descriptors, such as the 
convex hull, the surrounding triangle and quadrangle of larger area and the sur-
rounding rectangle of smaller area and is invariant to rigid body transformations 
(scale, rotation and translation). 

2   Conclusions and Future Work 

In this paper, we have described the different architectural modules of a real time 
hand gesture recognition engine based on computer-vision. The system is configured 
with XML specifications that describe the type of gesture to be recognized in a given 
context: Static Hand Poses, Simple Hand Paths or Staged Hand Paths. The system 
was evaluated with an experiment were a user was issuing static hand poses of Portu-
guese Sign Language, to assess the robustness of various algorithmic alternatives to 
handle with the sub-problem of shape recognition, present in the hand pose under-
standing process. Our results have shown that the Pair-wise Geometrical Histogram 
and Template Matching methods, are the most effective in relation to the average 
symbol recognition rate metric, reaching the average recognition rate of, respectively 
58.1% and 53.6 %, for the case of the own user library of symbols. If the test is only 
made with highly non-correlated symbols, that metric can rise up to 90%. Taking this 
result into account, an application dedicated to users with hearing impairments,  
interacting with home appliances, was set-up, using a restricted set of static hand 
poses taken from the Portuguese Sign Language signs. The results were highly suc-
cessful in determining the usefulness of static hand gestures in simple (but general) 
person-machine HCI tasks. O.G.R.E, will be soon available under GPL licensing. As 
a natural continuation of our work, we aim at bi-manual gesture recognition and hand 
feature extraction for finger recognition and occlusion treatment.  
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Abstract. In the last decade speech processing has been applied in commer-
cially available products. One of the key reasons for its success is the identifi-
cation and use of an underlying set of generic symbols (phonemes) constituting
all speech. In this work we follow the same approach, but for the problem of
human body gestures. That is, the topic of this paper is how to define a frame-
work for automatically finding primitives for human body gestures. This is done
by considering a gesture as a trajectory and then searching for points where the
density of the training data is high. The trajectories are re-sampled to enable a
direct comparison between the samples of each trajectory, and enable time in-
variant comparisons. This work demonstrates and tests the primitive’s ability
to reconstruct sampled trajectories. Promising test results are shown for sam-
ples from different test persons performing gestures from a small one armed
gesture set.

1 Introduction

In the last decade speech synthesis and speech recognition have transferred from only
being research topics into core technologies in commercially available products. One
of the key reasons for this transfer is the identification and use of an underlying set of
generic symbols constituting all speech, the phonemes. Phonemes are basically small
sound samples that put together in the correct order can generate all the words in a
particular language, for example English.

It is widely accepted that more than half of the information transmitted in a human-
human interaction is done by other means than speech, and that the human body language
is responsible for most of this information. Furthermore, for better human-computer in-
terfaces to be build the computer might need to be equipped with the ability to understand
the human body language [15]. Since automatic recognition of human body language is
a desired ability research has been conducted in this area. Much of this research is based
on defining a subset of the human body language, normally denoted ”actions”, and then
building a classifier based on some kind of learning scheme applied to some training
data. The result of the training is a sequence of values in some state-space for each ac-
tion. The different learnt sequences are compared to the input data during run-time and
a classification is carried out.

In some systems, however, a different approach is followed1. This approach is based
on the idea that an action can be represented by a set of shorter (in terms of time du-
ration) primitives. These primitives take different names such as movemes [4], atomic

1 These approaches are sometimes motivated directly by the notion of finding ”phonemes” in
the human body language.

S. Gibet, N. Courty, and J.-F. Kamp (Eds.): GW 2005, LNAI 3881, pp. 133–144, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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movements [5], activities [2], behaviors [12, 17], snippets [9], dynamic instants [16],
states [3], and examplars [14].

Besides the different names used to describe the notion of motion primitives, the
approaches also differ in another way, namely whether a primitive is dependent or in-
dependent on time. The approaches based on independence find their inspiration in
key-frame animation. Key-frame animation is based on the idea that animating an artic-
ulated object in a time sequence is a matter of defining the configurations for a number
of distinct frames (key-frames) and then interpolate all in-between frames using e.g.,
inverse kinematics. Mapping this concept to the problem of recognizing human body
language converts the problem to a matter of recognizing a number of single configura-
tions and ignoring all in-between configurations. This concept is sound but introduces
a number of problems including the problem of defining which configurations (or key-
frames) that best represent an action.

In the work by Rao et al. [16] the problem of recognizing dynamic hand gestures is
addressed. They track a hand over time and hereby generate a trajectory in 3D space (x-
and y-position, and time). They search the trajectory for significant changes, denoted
dynamic instants, which are defined as instants with a high curvature. In the work by
Jordi [8] the problem of finding key-frames for cyclic actions, like walking and running,
is addressed. They capture the joint angles using an optical motion capture system and
compactly represent a time sequence of such data using a point distribution model.
Since the actions are cyclic they argue that the likelihood of a configuration being part
of an action can be measured as the Mahalanobis distance to the mean. The key-frames
are then defined as configurations where the Mahalanobis distance locally is maximum,
i.e., key-frames are the least likely configurations!

The alternative to the key-frame approach is to represent the entire trajectory (one
action), but doing so using a number of smaller sub-trajectories. That is, the entire tra-
jectory through a state space is represented as opposed to only representing a number
of single points. Several problems are associated with this approach, for example, how
to define the length of the sub-trajectories. If too long then the primitives will not be
generic. If too short the compactness of the representation is lost. In the work by Hod-
gins et al. [7] different approaches to find such sub-trajectories for full body motion are
compared, and show promising results. Their comparison of three different approaches
finds Probabilistic PCA as a very efficient tool for finding transitions between different
behaviours.

In the work by Howe et al. [9] the problem of capturing the 3D motion of a hu-
man using only one camera is addressed. The main body parts are tracked in 2D and
compared to learned motion patterns in order to handle the inherent ambiguities when
inferring 3D configurations from 2D data. The learned motion patterns are denoted
”snippets” and consist of 11 consecutive configurations. These are learned by group-
ing similar motion patterns in the training data. In the work by Bettinger et al. [1] the
problem of modeling how the appearance of a face changes over time is addressed.
They use an active appearance model to represent the shape and texture of a face,
i.e., one point in their state-space corresponds to one instant of the shape and tex-
ture. They record and annotate a number of sequences containing facial changes. Each
sequence corresponds to a trajectory in their state space. The states with the high-
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est densities are found and used to divide the data into sub-trajectories. These sub-
trajectories are modeled by Gaussian distributions each corresponding to a temporal
primitive.

The different approaches found in the literature that uses the notion of motion prim-
itives more or lees follow the structure below.

Temporal content. Either only a single time instant define a primitive or a primitive is
based on a consecutive number of temporal instants.

Motion capture. In order to find the primitives the motion data needs to be captured.
This could for example be done by an optical system or electromagnetic sensors.

Data representation. What is measured by the motion capture system is normally the
3D position of the different body parts. These measurements are often represented
used normalized angles. Furthermore, the velocity and acceleration might also be
considered.

Preprocessing. The captured data can have a very high dimensionality and can there-
fore be represented more compactly using, e.g., PCA. Furthermore, the data might
be noisy and is therefore often filtered before further processing.

Primitives. It needs to be decided how to define a primitive. Often this is done via a
criteria function which local minima/maxima defines the primitives.

Application. The chosen method needs to be evaluated. This can be with respect to the
number of primitives versus the recognition rate, but it can also be a comparison
between the original data and data synthesized using the primitives.

Our long term goal is to find a set of generic primitives that will enable us to describe
all (meaningful) gestures conducted by the upper body of a human. Our approach is to
investigate different data representations together with different criteria functions. We
seek to find primitives for both recognition and synthesis, and evaluate the relationship
between the two.

This particular paper presents the initial work towards our goal and the focus of the
paper is to obtain experiences with all the topics listed above. Concretely we define a
number of one-armed gestures and for each gesture we evaluate a method used to find
primitives. The criteria function is based on a combination of two concepts, namely the
curvature and density of a trajectory.

The paper is structured as follows. In section 2 the gesture data and the applied
motion capture technique are presented. In section 3 we describe how the data is nor-
malized. In section 4 the concept behind the primitives is given. In section 5 we present
the density measure used in the criteria function, and in section 6 we combine this with
a distance measure and defined how the criteria function is evaluated in order to select
the primitives. In section 7 the test results are presented and in section 8 a conclusion is
given.

2 The Gesture Data

The gestures we are working with are inspired by the work of [13] where a set of
hand gestures are defined. The gestures in [13] are primarily two-hand gestures, but we
simplify the setup to one-hand gestures in order to minimize the complexity and focus
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Fig. 1. Placement of sensors. The figure is adapted from [11].

on the primitives. Some of the gestures were exchanged with other more constructive
ones. The final set of gestures are, as a result of this, all command gestures which can
be conducted by the use of only one arm. The gestures are listed below.

Stop: Hand is moved up in front of the shoulder, and then forward (with a blocking
attitude), and then lowered down.

Point forward: A stretched arm is raised to a horizontal position pointing forward,
and then lowered down.

Point right: A stretched arm is raised to a horizontal position pointing right, and then
lowered down.

Move closer: A stretched arm is raised to a horizontal position pointing forward while
the palm is pointing upwards. The hand is then drawn to the chest, and lowered
down.

Move away: Hand is moved up in front of the shoulder while elbow is lifted high,
and the hand is then moved forward while pointing down. The arm is then lowered
down.

Move right: Right hand is moved up in front of the left shoulder. the arm is then
stretched while moved all the way to the right, and then lowered down.

Move left: Same movement as Move right but backwards.
Raise hand: Hand raised to a position high over the head, and then lowered down.

Each gesture is carried out a number of times by a number of different subjects,
in order to have both data for inter-person comparisons, and comparable data for each
gesture by several different subjects.

The gestures are captured using a magnetic tracking system with four sensors: one
at the wrist, one at the elbow, one at the shoulder, and one at the torso (for reference),
as shown in figure 1. The hardware used is the Polhemus FastTrac [10] which gives a
maximum sampling rate of 25Hz, when using all four sensors. In order to normalize
the data and make it invariant to body size, all the collected 3-dimensional position
data is converted to a time sequence of four Euler angles: three at the shoulder and
one at the elbow. Besides normalizing the data, this transformation also decreases the
dimensionality of the data from 12 to only 4 dimensions.
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3 Normalizing the Data

In order to compare the different sequences they each need to be normalized. The goal is
to normalize all the gesture trajectories so each position on a trajectory can be described
by one variable t, where t ∈ [0; 1].

The first step is to determine approximately where the gestures’ endpoints are. In
this experiment we have chosen to do so by defining a gesture set where all gestures are
considered to both start and stop when the arm is hanging relaxed from the shoulder. A
velocity threshold ensures that the small movements done between gestures is added to
neither, and simplifies the separation of the individual gestures.

The trajectories are therefore homogeneously re-sampled in order to enable time
invariant comparisons. This is done by interpolating each gesture, in the 4D Euler-
space, by use of a standard cubic spline function. The time and velocity information
is, however, still available from parameters in the new sample points, even though this
is not used in this work. The homogeneously re-sampling allows for a calculation of
the statistics for each gesture and at each sample point. Concretely, for each gesture
we calculate the mean and covariance for each sample point, i.e., each instant of t.
This gives the average trajectory for one gesture along with the uncertainties along the
trajectory represented by a series of covariant matrices, see figure 2.

Fig. 2. Six example trajectories for a fictive gesture. Left: Input after cubic spline interpolation.
Middle: Input including the position of the mean points. Right: The sizes of the mean points
indicate the density of the curves.

4 Defining Primitives of Human Gestures

This section gives an intuitive description of which criteria define a good primitive can-
didate. In order to find the primitives we apply the following reasoning. A primitive
is a particular configuration of the arm, i.e., of the four Euler angles. For a config-
uration to qualify as a good primitive candidate the configuration must appear in all
the training data, at approximately the same time. For such a configuration to exist,
all the training data must vary very little at this point in space and time, which will
result in a very high density of training trajectories at this position in space. The den-
sity of a particular configuration measures how close the original sequences passed
this configuration. The closer they passed the higher the density, which corresponds to
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a good candidate. The logic behind this is very simple; only at the points where we
have selected a primitive can we be sure that our new interpolated curve will parse
directly though. Even though this paper does not go into detail with the recognition
part, the main reasons for selecting primitives where the density is high is, that it
makes good sense to compare an unknown curve to our known interpolated curve,
at exactly the points where all the training data trajectories laid closest, see figure 2.
However, just selecting the n points with the highest density will result in very ineffi-
cient primitives, since one primitive is enough to direct the interpolated curve through
this area. So selecting primitives in places where the curve already passes by, will
offer little to the reconstruction of the original curve. In the next two sections we
describe how we calculate the density measure, and how this is used to select our
primitives.

5 Measuring the Density

In section 3 the points constituting each trajectory were normalized so that the trajecto-
ries for different test subjects can be compared. That is, each trajectory was re-sampled
so that they each consist of the same amount of points which are aligned. We can there-
fore calculate the covariance matrix for each time instant. The covariance matrices for
each time instant express both how data are correlated but also how they are spread
out with respect to the mean. The Mahalanobis distance expresses this relationship by
defining a distance in terms of variances from a data point to the mean. It is defined as

r2 = (x − μ)T C−1(x − μ) (1)

where x is a data point, μ is the mean for this particular time instant, and C is the
covariance matrix. If r is constant then equation 1 becomes a hyper ellipsoid in 4D
space. The data points on its surface have the same variance-distance to the mean. The
volume of a hyper ellipsoid with fixed Mahalanobis distance is a direct measure of
the density of the data at this time instant. A big volume corresponds to a low density
where the points are spread out, whereas a small volume corresponds to a high density
as the same amount of data are located at a much smaller space. The volume of a hyper
ellipsoid which is expressed as in equation 1 is given as [6]

V =
π2 · r4

2
|C| 1

2 (2)

where |C| is the determinant of the covariance matrix. We are not interested in the
actual value of the volume but rather the relative volume with respect to the other time

instants. Therefore equation 2 can be reduced to V = |C| 1
2 and is illustrated in figure

2. Below we give an intuitive interpretation of this measure.

5.1 Geometrical Interpretation

Due to the inherent difficulty of illustrating in 4D we give the geometric interpretation

of |C| 1
2 in 2D and then generalize to higher dimensions.
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Imagine that we have N samples in the 2D X-Y plan. For simplicity we assume that
the mean of the data is the origin. The covariance matrix is given as

C =
[

c2
x c2

xy

c2
yx c2

y

]
(3)

where entries are calculated as

c2
x =

Σx2

n − 1
c2
y =

Σy2

n − 1
c2
xy = c2

yx =
Σxy

n − 1
(4)

We can think of {x1, x2, x3, · · · , xn} and {y1, y2, y3, · · · , yn} as two vectors in an
N-dimensional space, see figure 3.

N-dim. space

θ

x

y

x

y

N-dim. space

Areal

A B

Fig. 3. A: An illustration of the 2D data interpreted as vectors in an N -dimensional space. B: The
area of the parallelogram spanned by the two vectors.

The angle, θ, between the two vectors expresses the correlation between the two
variables, x and y. The smaller the angle the higher correlation. The correlation is of-
ten normalized to the interval [0, 1] using trigonometry, i.e., the correlation is given as
cos(θ). Relating this to the two vectors yields

cos(θ) =
xT y
|x||y| =

Σxy√∑
x2
√∑

y2
(5)

Inserting this into the covariances yields

c2
xy = c2

yx =

√∑
x2
√∑

y2 cos(θ)
n − 1

(6)

We can now calculate the determinant of the covariance matrix as

|C| = c2
x · c2

y − c2
xy · c2

yx ⇒ (7)

|C| =
∑

x2∑ y2

(n − 1)2
−
(

1
n − 1

)2(√∑
x2

)2(√∑
y2

)2

cos(θ)2 ⇒ (8)

|C| =
(

1
n − 1

)2∑
x2
∑

y2 (1 − cos(θ)2
)⇒ (9)

|C| = c2
x · c2

y · sin(θ)2 = (cx · cy · sin(θ))2 (10)



140 L. Reng, T.B. Moeslund, and E. Granum

This equation can be interpreted in a geometrical manner as illustrated in figure 3.B. The
area, A, of the parallelogram (shaded area) is given as A = cxcy sin(θ), i.e., the area
depends on the standard deviation of the two variables, x and y, and the correlation
between them. The higher the correlation the smaller the area. The 2D interpretation
of |C| 1

2 is the area of the parallelogram in the fourth potent. In the 3D case the geo-
metric interpretation of the determinant of the covariance matrix is the volume of the
parallelepiped spanned by three variables and their correlation. In 3D+ the geometric
interpretation becomes less intuitive and is sometimes expressed as the generalization
of the concept of variance.

6 Selecting the Primitives

Above we have defined and presented a method for calculating the density measure,
and are now ready to include this into one criteria function that can be evaluated in
order to find the primitives. The criteria function will combine the density measure
with the distance between the homogeneously re-sampled mean gesture trajectory (m)
and a trajectory made by interpolating the endpoints and the first selected primitives,
using a standard cubic spline function (c) for each of the four Euler angles. In order to
make a direct comparison, both the mean gesture trajectory and the interpolated cubic
spline trajectory were given the same amount of points. This enables a calculation of
the error-distance (δ) between the curves for each point pair. If multiplying this error
distance at each point with the density (β), we can get a distance measure much similar
to the Mahalanobis.

Since the four angles might not have the same dynamic ranges and more freedom to
optimize future parameters is desired, the criteria function (λ) is defined as a weighted
sum of error measures (αi) for each of the four Euler angles:

λ(t) = ω1α1(t) + ω2α2(t) + ω3α3(t) + ω4α4(t) (11)

where the four weights ω1 + ω2 + ω3 + ω4 = 1, and the error measure:

αi(t) = βi(t) · δi(t)2, and : δi(t) =
√

(mi(t) − ci(t))2 (12)

Given the criteria function in equation 11 we are now faced with the problem of
finding the N best primitives for a given trajectory. The most dominant primitive, χ1 is
obviously defined as : χ1 = arg max

t
λ(t).

In order to find the second primitive, the first one is added to the cubic spline function
(c), and the four trajectories are then recalculated, so new error distance measures can
be calculated, see figure 4. This procedure can be repeated until the sum of all (λ) falls
below a given threshold, or the number of primitives reaches an upper threshold.

6.1 Optimizing the Primitive’s Position

Knowing that this method can, most likely, be improved; we tried to implement an
optimizing step at the end of each primitive selection. A brute force test on all the test
data could be used in order to find the optimal solution given a number of maximum



Finding Motion Primitives in Human Body Gestures 141

0 10 20 30 40 50 60 70 80 90 100
20

40

60

80

Sample

A
ng

le

Fig. 4. Calculating the error-distance in one direction. Solid: The mean gesture trajectory. Dashed:
Interpolated cubic spline. Dotted: Variance of training data. Circles: Selected primitives and end-
points.

primitives and number of samples. This is, however, very time consuming, and only
valuable for the given data set, and was therefore not considered.

Instead, tests were done with another much faster method. After each new primitive
was selected, all the selected primitives were tested in a position one step to each side
along the mean gesture trajectory. Only if they could lower the total error sum, will they
move to this position, and as long as just one primitive could be moved, all other would
be tested again. This method will bring the error sum to a local minimum, but not to a
guarantied global minimum.

See the following section for tests results on both previous described methods.

7 Results

The tests described in this section were made on a training data set based on the eight
one arm gestures described in section 2. Three tests persons conducted each gesture no
less than ten times resulting in a total of 240 gestures2. The evaluation of our approach
consists of two tests for each action:

– Investigate how many primitives are required in order to reconstruct the original
gestures.

– Evaluate the optimization step, and determine whether or not this should be used in
our continuous work.

It is our belief that the only reasonable way to evaluate whether the reconstruction of
a gesture is life like enough to look natural, is to have a robot or virtual human avatar
performing the reconstructed gestures before a large number of test persons, and having
these evaluate the result. This was however not within range of our possibilities at this
point in our research. Instead, all reconstructions were evaluated by the research group
from a large number of graphs such as those shown in figures 5 and 6. The graphs show
the four angle spaces and error measure of the gesture Move Left, with two endpoints
and 2,4 and 8 primitives. Figure 5 show the result of the reconstruction without the
optimizing step, where as 6 were depicture the reconstruction of the exact same angle
spaces, but with the optimization. The sum of the error measures for each curve pair of

2 Additional 160 training gestures were made but had to be removed from the set do to extremely
low signal to noise ratio.
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Fig. 5. Reconstruction and error. Solid: The mean gesture trajectory. Dashed: Interpolated cubic
spline. Dotted: Variance of training data. Circles: Selected primitives and endpoints. A: With 2
primitives. B: With 4 primitives. C: With 8 primitives.
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Fig. 6. Reconstruction and error (Optimizted version). Solid: The mean gesture trajectory.
Dashed: Interpolated cubic spline. Dotted: Variance of training data. Circles: Selected primitives
and endpoints. A: With 2 primitives. B: With 4 primitives. C: With 8 primitives.
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Fig. 7. Logaritmic scale of error vs. number of primitives. Solid: Reconstruction error after primi-
tive selection without the density measure. Dashed: Reconstruction error after primitive selection
with the density measure. Dash-dot: Reconstruction error after primitive selection without the
density measure, but with optimization. dotted: Reconstruction error after primitive selection
with the density measure and optimization.

each gesture, were collected after the reconstruction of the curves with the number of
primitives ranging from 1-10. The error sums of both the optimized and none optimized
version of our approach are plotted on a single logarithmic graph, shown in figure 7.
The graph shows clearly that the optimized version has a lover error sum, but also that
one or more of the reconstructions with four primitives were stranded in an unfortunate
local minimum.

8 Conclusion

In this paper we have presented a framework for automatically finding primitives for hu-
man body gestures. A set of gestures is defined and each gesture is recorded a number
of times using a commercial motion capture system. The gestures are represented us-
ing Euler angles and normalized. The normalization allows for calculation of the mean
trajectory for each gesture along with the covariance of each point of the mean trajec-
tories. For each gesture a number of primitives are found automatically. This is done by
comparing the mean trajectories and cubic spline interpolated reconstructed trajectory
by use of a error measurement based on density.

Our framework were implemented in two slightly different versions, were the slower
proved to be superior, as it often is. Taken into consideration that our training data
were very noisy, and the presented work is part of an ongoing research, we find the
current results very promising, and will continue our work in this direction. We feel
that the density measure have been proven as a factor that must be considerated in
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this line of work. Its is still hard to say exactly how many primitives are needed to get a
natural reconstruction of a given gesture. But our tests indicate that somewhere between
five and ten should be sufficient. It is obvious that other kind of curve-reconstruction
techniques should result in much better reconstruction. But since the key-frames are
to be used for recognition as well, it is important to have our key-frames at the points
where the density is highest.
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Abstract. We developed an ”augmented violin”, i.e. an acoustic in-
strument with added gesture capture capabilities to control electronic
processes. We report here gesture analysis we performed on three differ-
ent bow strokes, Détaché, Martelé and Spiccato, using this augmented
violin. Different features based on velocity and acceleration were con-
sidered. A linear discriminant analysis has been performed to estimate
a minimum number of pertinent features necessary to model these bow
stroke classes. We found that the maximum and minimum accelerations
of a given stroke were efficient to parameterize the different bow stroke
types, as well as differences in dynamics playing. Recognition rates were
estimated using a kNN method with various training sets. We finally
discuss that bow stroke recognition allows to relate the gesture data to
music notation, while a bow stroke continuous parameterization can be
related to continuous sound characteristics.

Keywords: Music, Gesture Analysis, Bow Strokes, Violin, Augmented
Instruments.

1 Introduction

There is an increasing interest in using gestural interfaces to control digital au-
dio processes. Despite numerous recent achievements ([12]), important ground
work on gesture analysis is still necessary for the improvement of such interfaces.
We are currently developing various ”augmented instruments”, i.e. acoustic in-
struments with added gesture capture capabilities. Such an approach remains
remarkably fruitful for the study of gesture in music. As a matter of fact, the
use of acoustic instruments in this context allows to apprehend instrumental
gesture in a a priori defined framework, linked to both a symbolic level, the
music notation, and a signal level, the acoustic instrument sound.

One of our current project concerns an ”augmented violin”, similar to the
one developed by D. Young [13]. On a fundamental level, our goal is to build
a model of the player’s gestures reflecting his/her expressive intentions related
to violin playing techniques. Specifically, our aims are to establish the relation-
ships between the captured data, bowing styles and sound characteristics. This
includes the study, on a gestural level, of the variations that occur between dif-
ferent interpretations of a single player or between players. These studies will

S. Gibet, N. Courty, and J.-F. Kamp (Eds.): GW 2005, LNAI 3881, pp. 145–155, 2006.
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lead us to the development of real-time analysis tools, enabling an interpreta-
tion feedback, which includes gesture recognition, and gesture following, i.e. the
possibility to track a performance with respect to a predefined reference. We be-
lieve that both approaches are key to develop novel types of interaction between
instrumentalists and computers.

We report in this paper the study of three violin bow strokes (Détaché, Mar-
telé and Spiccato) and the evaluation of their possible recognition. The article
is organized as follows. We first present a review of similar works. In section 3,
we present the capture system implemented on the violin. In sections 4 and 5,
we show results on the parameterization and recognition of bow stroke types.
Finally, we conclude in sections 6 and 7 by a discussion of these results and their
implications on future work.

2 Related Works

Our concept of ”augmented instruments” is similar to the Hyperinstruments
developed by T. Machover and collaborators. The idea is to use a traditional
instrument and to extend its capabilities by digital means. For example, the
HyperCello [7] created in 1991 was conceived as an acoustic cello with added
measurements of wrist movement, bow pressure and position, and left hand
fingering. More recently, D. Young extended the HyperCello to the violin with
the HyperBow [13], [14].

Several other interfaces have been developed based on string instruments for
artistic purposes ([6], [4], [11], and [9]). All of these works generally used the
sensor signals to directly control sound treatment parameters, such as filters
[11] or physical model synthesis [14]. B. Schoner [10] adopted a probabilistic
approach to infer, in real time, cello sounds from the gesture input given by the
HyperCello.

Very few works actually report an analysis of the signals, specifying the rela-
tionships between the data and the instrumentist’s performance. Among them,
C. Peiper et al. [8] used decision tree techniques to classify violin bow strokes
based on motion tracking. We here pursue the approach of analyzing different
types of bow strokes, and in particular we propose to estimate invariance and
variability of the measured signals.

3 Hardware Design

Hardware developments were designed with the following constraints: compati-
bility with an acoustic violin, no significant alteration of the instrument, wire-
less communication, relatively inexpensive. The prototype we built and used
in this study is shown on figure 1. Two types of gesture data are measured,
using technology similar to the one described in [13]: bow position and bow
accelerations.

First, the sensing system can measure the bow-strings contact position along
two directions: between tip and frog, between bridge and finger-board. This
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position is measured via capacity coupling between a resistive tape fixed along
the bow and an antenna behind the bridge.

Second, acceleration is sensed thanks to two Analog Device ADXL202 placed
at the bow frog. Note that such sensors are sensitive to both gravity, hence
inclination, and movement acceleration (generally referred as static and dynamic
accelerations). The two accelerometers are fixed to the bow nut in such a way that
acceleration is measured in three dimensions: bowing direction, string direction
and vertical direction.

The position data, obtained from the antenna behind the bridge, is digitized
in 16 bits with a sensor acquisition system developed at IRCAM, Ethersense [3].
The acceleration data are sent wirelessly to a RF receiver also connected to the
sensor acquisition system. The acceleration dynamic range has been measured
to be of 65 dB. All the data are transmitted to Max/MSP through an ethernet
connection using the Open Sound Control protocol, at a data rate of 200 Hz. The
surplus weight added by the sensing system is actually 15 grams, mainly located
at the frog. Although perceptively heavier, the bow is still playable according
to professional violinists. A smaller and slightly lighter prototype is currently
under development.

(a). Augmented violin bow

(b). Antenna behind the bridge for
position measurements.

(c). The sensing system placed on the
bow frog.

Fig. 1. Pictures of the augmented violin prototype

4 Gesture Analysis

We studied three standard types of bow strokes (Détaché, Martelé and Spiccato),
by focusing the analysis on accelerometer signals in the bowing direction, which
contain the essential information.
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4.1 Violin Bow Strokes

Here is a brief description of these bow strokes according to [2].
In Détaché, the bow linearly goes from tip to frog and inversely from frog to

tip. This linear movement must be adapted to the various dynamics. The bow
can be used entirely or in fractions.

Martelé requires a violent gesture. The whole arm must be rapid and vigorous:
a very sharp, almost percussive attack must be obtained at each extremity of
the bow.

Spiccato uses the phalanges suppleness so that the bow can leave the string
after each notes. It results in a light and precise sound.

4.2 Data Acquisition

We built a database from recordings of professional and amateur violinists per-
forming scales in the three bow strokes Détaché, Martelé and Spiccato, at two
tempi, 60 bpm and 120 bpm, and three dynamics, pianissimo (pp), mezzo forte
(mf ), fortissimo (ff ).

In order to free the accelerometer signals from angle contributions, we asked
the violinists to perform scales on one string at a time and recorded scales
on every strings. This way, angle contribution is a constant offset and can be
subtracted.

We chose in this study to consider individual strokes. We therefore segmented
the recorded gesture data using a peak detection algorithm on the acceleration
signals. The gesture database is hence constituted of executions of separate notes,
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(a). Détaché. (b). Martelé. (c). Spiccato.

Fig. 2. Acceleration and velocity curves for a single note played in the three styles
Détaché, Martelé and Spiccato. Dynamic is mf and tempo 60 bpm.
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played in three different styles, at three dynamics, two tempi, by two different
players.

Figure 2 shows an example of data for the three types of bow strokes mf
and at 60 bpm. We can see that in Détaché, bow velocity remains relatively
constant after the attack, unlike Martelé and Spiccato, where the bow must be
slowed down. Martelé has typically higher absolute acceleration values compared
to Spiccato. Martelé indeed requires more velocity as it is generally performed
using a greater length of bow, compared to Spiccato, in order to achieve its
typical percussive attack.

4.3 Gesture Features

Four parameters are derived from the acceleration and velocity curves to
model the bow strokes: amax, amin, vmax and vmin (first local minimum after
vmax), as illustrated on figure 3. Bow velocity is computed from the integra-
tion of accelerometers signals. These features correspond to a basic parame-
terization of the velocity curve shape. They can be computed with sufficient
precision and without assuming any model for the velocity shape. They allow
for the representation of Détaché, Martelé and Spiccato within a four dimen-
sional space.
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(a). Features on the Acceleration Curve. (b). Features on the Velocity Curve.

Fig. 3. Illustration of the four features amax, amin, vmax and vmin (first local minimum
after vmax) on Martelé acceleration and velocity curves

4.4 Gesture Space

We used Linear Discriminant Analysis (LDA), which maximizes separation be-
tween classes, to estimate the dimensionality of the parameterization. LDA on
the gesture database, considering three bow strokes classes, indicates that the
class scatter matrix only has two significant eigen values. Therefore, the ges-
ture data can be clustered in a bidimensional space, with maximum in-between
classes distance.
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(a). Player 1. (b). Player 2.

Fig. 4. Bow Strokes Feature Space (Player Detail). Each point corresponds to a single
bow stroke. Fig (a) and (b) show the feature space for each player, at a same dynamic
(mf ) and tempo (60 bpm). Legend is Détaché = ∇, Martelé = ∗, and Spiccato = �.

We actually found that amax and amin, having major contributions in the
eigen vectors, are the two most consistent parameters to model bow strokes, as
illustrated in figures 4 and 5. As shown on figures 4(a) and 4(b), for a given dy-
namic, each bow stroke type forms a separate cluster. Moreover, the disposition
of these clusters is similar for both players.

Figure 5(a) illustrates the case where different dynamics are considered. The
basic clustering structure remains even if overlap occurs. Nevertheless, for each
bow stroke types, sub-structure clustering can be observed as detailed in figures
5(b), 5(c) and 5(d). Precisely, each cluster is composed of three sub-clusters, one
for each dynamic variations (pp, mf, ff ). Fortissimo always corresponds to the
highest amax and amin values.

5 Gesture Recognition

We further evaluate the ability of recognizing bow stroke using kNN with amax

and amin.Three different test scenarios were chosen.
First, we defined three classes, corresponding to the three types of bow strokes.

The whole database, i.e. mixing two players, three dynamics and two tempi, is

Table 1. kNN recognition results (Test scenario 1). Database is mixing 2 players, 3
nuances and 2 tempi. Three classes considered.

Test\Ref Détaché Martelé Spiccato
Détaché 96.7% 1.3% 2.0%
Martelé 1.0% 85.8% 13.2%
Spiccato 6.0% 5.0% 89.0%
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(a). Bow stroke feature space mixing three dynamics for one player and one tempo
(60 bpm). Legend is Détaché = ∇, Martelé = ∗, and Spiccato = �.
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(b). Détaché cluster:
(pp= •, mf = ∇, ff = �).

(c). Martelé cluster:
(pp= •, mf = ∗, ff = �).

(d). Spiccato cluster:
(pp= •, mf = �, ff = �).

Fig. 5. Bow Strokes Feature Space (Dynamic Detail). Each point corresponds to a
single bow stroke. Fig (a) plots all the features points for one player, at one tempo and
at three dynamics. The three bow strokes appear in clusters. Fig (b), (c) and (d) show
the detail for each bow stroke cluster: three sub-clusters corresponding to the three
dynamics can be seen.

randomly divided into two parts (one-fourth and three-fourths). The quarter
of the database, i.e. 320 points, serves as a reference and the remaining three
quarter, i.e 1000 points, is used to evaluate the recognition rate. For each test
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point, vote is done according to the most represented type of bow stroke in
the 10 nearest neighbors. Table 1 shows the recognition percentage for this first
setup.

In the second scenario, we considered the same three classes but cross-tested
the players data: one served as reference for the other. The results are reported
in table 2.

Table 2. kNN recognition results (Test scenario 2). Database is mixing 1 player (Pl1 ),
1 nuance (mf ) and 1 tempo (60bpm). Test points from other player (Pl2 ), same nuance
and tempo. Three classes considered.

Ref Pl1
Test \ Det Mar Spi

Det 100.0% 0.0% 0.0%
Pl2 Mar 0.0% 100.0% 0.0%

Spi 6.3% 25.0% 68.7%

In the third scenario, we considered each variation of dynamics as a separate
class. Thus, nine reference classes, i.e. three types of bow strokes times three
nuances for a single player, are tested. This time, two-thirds of the database are
used as a reference where each of the nine classes is represented. Table 3 shows
the recognition results. For each line, first column is the class of the tested
points and the other columns give the percentages of recognition for the nine
classes.

Table 3. kNN recognition results (Test scenario 3). Database is mixing 1 player (Pl1 ),
3 nuances, 1 tempo (60bpm). Nine classes considered (3 bow strokes x 3 nuances).

Ref pp mf ff
Test \ Det Mar Spi Det Mar Spi Det Mar Spi

Det 100.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
pp Mar 0.0 % 78.6 % 0.0 % 0.0 % 0.0 % 7.1 % 0.0 % 0.0 % 14.3%

Spi 23.1 % 0.0 % 76.9 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
Det 0.0 % 9.5 % 0.0 % 90.5 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

mf Mar 0.0 % 0.0 % 0.0 % 0.0 % 95.8 % 0.0 % 4.2 % 0.0 % 0.0%
Spi 0.0 % 35.3 % 0.0 % 0.0 % 0.0 % 64.7 % 0.0 % 0.0 % 0.0 %
Det 0.0 % 0.0 % 0.0 % 6.7 % 0.0 % 0.0 % 93.3 % 0.0 % 0.0 %

ff Mar 0.0 % 0.0 % 0.0 % 0.0 % 85.7 % 0.0 % 0.0 % 14.3 % 0.0%
Spi 0.0 % 0.0 % 0.0 % 0.0 % 0.0% 49.9 % 0.0 % 0.0 % 50.1%

6 Discussion

For recognition, three test scenarios were elaborated. The first two scenarios
yields high recognition rates. This shows that the three bow strokes are efficiently
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characterized by the features (amin, amax), even mixing data of two players,
different dynamics and tempi, and with a relatively low number of reference
data, i.e. one-fourth of the data. Moreover, the cross-player test done in the
second scenario confirms the features invariance properties. In this well defined
playing situation (scales), our results thus show that the chosen features can be
directly related to a music notation level.

In the third scenario, the recognition performances are reduced in some cases.
Even with a high proportion of data as reference (two-thirds), confusions occur
for example between Spiccato mf and Martelé pp. However, such confusions are
informative as they illustrate actual similarities in bow stroke gestures, when
mixing different dynamics. Precisely, from our results, the following different
classes, Spiccato mf, Martelé pp and Détaché mf, share similar features, which
was actually found to be consistent from the viewpoints of violinists. This shows
the limits of recognition approaches since frontiers between classes are not always
well defined perceptively.

Furthermore, points that are close in the gesture feature space (figure 5(a))
share similar sound characteristics, e.g. Martelé pp, Détaché mf and Spiccato ff.
Consequently, it is perceptually more coherent to characterize bow strokes with
a continuous parameterization, using for example amax and amin: such parame-
ters can indeed be related to continuous sound characteristics and/or perceptual
features of the listener. It is important to note that a continuous parameteriza-
tion enables both the recognition of bowing styles and the characterization of
hybrid bow strokes.

The results of the study also show that bow acceleration is a parameter of
major influence to characterize the different ways of bowing. This comes in com-
plement to acoustic studies on the violin, notably by A. Askenfelt [1] and K.
Guettler [5], having already demonstrated the influence of bow acceleration val-
ues on the establishments of a Helmhotz regime. It will be interesting to relate
the different bowing styles to the number of nominal periods elapsing before
Helmholtz triggering occurs, as described in [5].

7 Conclusion and Perspectives

Our goal was to study three different bow strokes, Détaché, Martelé and Spic-
cato, based on gesture data. After considering basic features based on velocity
and acceleration curves, we found that amax and amin provided a pertinent
parameterization of these bow strokes. In particular, these parameters enable
the recognition of bow stroke types (even in the case of two different play-
ers). When considering a higher number of classes including dynamics, we noted
typical confusions, consistent with perceptual point of views of violin players
and listeners. In summary, our gesture analysis was based on two complemen-
tary approaches: recognition and gesture parameterization. Recognition allows
us to relate gesture data to music notation, while continuous parameteriza-
tion of bow strokes could be related to continuous sound characteristics. The



154 N.H. Rasamimanan, E. Fléty, and F. Bevilacqua

detailed relationship between gesture data and sound parameters will be the
object of a future study. Moreover, we will investigate other type of parame-
terizations of the velocity and acceleration that should account for finer char-
acterization of bow strokes. Other parameters such as bow force on strings,
pointed by acoustic studies as an influential parameter on sound, will also be
considered.
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Abstract. This paper compares different algorithms for tracking the
position of fingers in a two-dimensional environment. Four algorithms
have been implemented in EyesWeb, developed by DIST-InfoMus labo-
ratory. The three first algorithms use projection signatures, the circular
Hough transform, and geometric properties, and rely only on hand char-
acteristics to locate the finger. The fourth algorithm uses color markers
and is employed as a reference system for the other three. All the al-
gorithms have been evaluated using two-dimensional video images of a
hand performing different finger movements on a flat surface. Results
about the accuracy, precision, latency and computer resource usage of
the different algorithms are provided. Applications of this research in-
clude human-computer interaction systems based on hand gesture, sign
language recognition, hand posture recognition, and gestural control of
music.

1 Introduction

The advances in technology and the widespread usage of computers in almost
every field of human activity are necessitating new interaction methods between
humans and machines. The traditional keyboard and mouse combination has
proved its usefulness but also, and in a more extensive way, its weakness and
limitations. In order to interact in an efficient and expressive way with the com-
puter, humans need to be able to communicate with machines in a manner more
similar to human-human communication.

In fact, throughout their evolution, human beings have used their hands, alone
or with the support of other means and senses, to communicate with others, to
receive feedback from the environment, and to manipulate things. It therefore
seems important that technology makes it possible to interact with machines
using some of these traditional skills.

The human-computer interaction (HCI) community has invented various tools
to exploit humans’ gestures, the first attempts resulting in mechanical devices.
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Devices such as data gloves can prove especially interesting and useful in certain
specific applications but have the disadvantage of often being onerous, complex
to use, and somewhat obtrusive.

The use of computer vision can consequently be a possible alternative. Re-
cent advances in computer vision techniques and availability of fast computing
have made the real-time requirements for HCI feasible. Consequently, extensive
research has been done in the field of computer vision to identify hand poses
and static gestures, and also, more recently, to interpret the dynamic meaning
of gestures [6][9]. Computer vision systems are less intrusive and impose lower
constraints on the user since they use video cameras to capture movements and
rely on software applications to perform the analysis.

In order to avoid the problem of complex and not reproducible high cost sys-
tems, this paper focuses on two-dimensional systems using a single simple video
camera. Algorithms using projection signatures, the circular Hough transform,
and geometric properties have been chosen and are compared to an algorithm
using color markers. Color markers are used solely as a reference system to eval-
uate the accuracy and the precision of the other algorithms, the presence of
markers being a non-desirable constraint on the user of such a system. All the
algorithms have been implemented in EyesWeb using the Expressive Gesture
Processing Library [1] together with newly developed blocks (available in Eye-
sWeb 4). These algorithms are designed to track different joints of the hand and
more particularly of the finger (finger intersections, fingertips). Knowledge about
these points on a frame-by-frame basis can later be provided to other analysis
algorithms that will use the information to identify hand poses (static) or hand
gestures (dynamic). Finger tracking is therefore at the base of many HCI ap-
plications and it opens new possibilities for multimodal interfaces and gestural
control of music.

The algorithms presented in this paper are inspired by the research on table-
top applications [7][8]. These kinds of applications are often limited to the use of
one finger instead of using the information that can be provide by tracking all fin-
gers. Furthermore, these applications often use specific and expensive hardware
(infrared camera for example). In this paper we suggest alternative methods that
can work with simple hardware, such as a low-cost webcam. We use methods
that were traditionally used in static pose identification (e.g. contour, signature)
to do dynamic tracking. The use of the Hough transform, on the other hand,
was inspired by research in 3-dimensional tracking [4], but also by some of the
previously mentioned tabletop applications. These applications use the specific
geometric shape of the fingertip with various templates matching algorithms to
locate fingers.

The first section of this article briefly describes and illustrates the EyesWeb
implementation of the four algorithms. Next, the test procedures are explained.
The third section presents the results obtained from each algorithm during the
tests. Finally, the article concludes with a comparative discussion of the potential
uses of the different algorithms.



158 A.-M. Burns and B. Mazzarino

2 Methods

All the algorithms were evaluated using two-dimensional images of a hand per-
forming different finger movements on a flat surface. The videos were recorded
by a single fixed camera with a frame rate of 25fps (frame per second), fixed gain
and fixed shutter. The tests were run on a Pentium 4 3.06GHz with 1Gb of RAM
under Windows XP operating system. In order to test the algorithms, the prob-
lems of finding the region of interest and of eliminating complex backgrounds
were reduced by shooting only the hand region on a uniform dark background.
The second line of figures 1, 2, and 3 illustrates the segmentation process. In
this simplify case, it consists of converting the image to gray-scale, applying a
threshold to segment the hand from the background (using the fact that the
hand is light while the background is dark), and filtering with a median filter to
reduce residual noise.

2.1 Projection Signatures

Projection signatures, are performed directly on the resulting threshold binary
image of the hand. The core process of this algorithm is shown on line 3 of
figure 1 and consists of adding the binary pixels row by row along a diago-
nal (the vertical in this case). Previous knowledge of the hand angle is there-
fore required. A low-pass filter is applied on the signature (row sums) in
order to reduce low frequency variations that create many local maxima and
cause the problem of multiple positives (more than one detection per finger-
tip). The five maxima thereby obtained correspond to the position of the five
fingers.

2.2 Geometric Properties

The second algorithm is based on the geometric properties and, as shown on
line 3 of figure 2, uses a contour image of the hand on which a reference point
is set. This point can be determined either by finding the center of mass of the
contour (barycenter or centroid) or by fixing a point on the wrist [11]. Euclidean
distances from that point to every contour points are then computed, with the
five resulting maxima assumed to correspond to the finger ends. The minima
can be used to determine the intersections between fingers (finger valleys). The
geometric algorithm also required filtering in order to reduce the problem of
multiple positives.

2.3 Circular Hough Transform

The circular Hough transform is applied on the contour image of the hand but
could as well be performed on an edge image with complex background if no
elements of the image exhibit the circular shape of the fingertip radius. The
circular Hough transform algorithm uses the fact that the finger ends and the
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Fig. 1. Processing steps of the column signature algorithm

finger valleys have a quasi-circular shape while the rest of the hand is more lin-
early shaped. In this algorithm, circles of a given radius are traced on the edge
or contour image and regions with the highest match (many circles intersecting)
are assumed to correspond to finger ends and valleys (this process is illustrated
on line 3 of figure 3). Searched fingertips radius can be set manually or deter-
mined by an algorithm using the palm radius to fingertip radius proportion as
an estimate [2] [11] [4]. The circular Hough transform can find both finger ends
and valleys but, as opposed to the geometric algorithm, doesn’t output them in
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Fig. 2. Processing steps of geometric properties method

two distinct sets. Furthermore, the circular Hough transform requires filtering
to eliminate false positives (detected regions that are not finger ends or valleys)
that frequently appeared between fingers. As illustrated in line 4 of figure 3,
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Fig. 3. Processing steps of circular Hough transform method

this can be done efficiently for finger ends by eliminating points that are found
outside the contour image. The inconvenient is that the set of discard points
contains a mix of finger valleys and false positive that cannot be sorted easily.
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2.4 Color Markers

While the three previous algorithms rely only on the hand characteristics to
find and track the fingers, the marker algorithm tracks color markers attached
to the main joints of the fingers. Each color is tracked individually using color
segmentation and filtering as illustrated in line 2 of figure 4. This permits the
identification of the different hand segments. The marker colors should therefore
be easy to track and should not affect the threshold, edge or contour image of
the hand. Respecting these constraints makes it possible to apply all algorithms
to the same video images and therefore to compare each algorithm degree of
accuracy and precision with respect to the markers.

Fig. 4. Processing steps of color markers method

3 Tests

3.1 Accuracy and Precision

Accuracy and precision are important factors in the choice of a finger-tracking
algorithm. The accuracy and precision of the different algorithms were deter-
mined with respect to the result obtained from the evaluation of the marker
positions. To evaluate the accuracy and precision of the algorithms, the coor-
dinates of 4 joints on each finger were tracked by applying the color tracking
method (figure 4). Coordinates obtained with the three other algorithms were
then related to the first set. The Euclidean distance between the marker and
the closest point of each algorithm was computed. The accuracy of an algorithm
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Fig. 5. Euclidean distance from the color marker for each of the three methods

can be determined by its distance from the marker. A curve close to zero de-
notes an accurate algorithm. The precision of an algorithm can be determined
by observing the shape of the curve. A precise algorithm will exhibit an al-
most flat curve. Figure 5 presents the results obtained by tracking the tip of
the small finger using each of the three algorithms. The values are compared
to a marker placed at the center of the tip of the small finger. It can be ob-
served that both the circular Hough transform and the geometric properties
algorithm are precise algorithm since the distance between the marker and the
point they return is almost constant. However, the circular Hough transform
seems to be more accurate than the geometric properties. The average distance
to the marker is really close to zero in the case of the circular Hough trans-
form, but is approximately ten pixels in the case of the geometric properties.
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The difference is mainly due to the fact that the geometric properties algorithm
detects the extremity of the finger while the circular Hough transform finds the
center and that where the markers are placed. In the case of the projection
signatures, the detection of the fingers is robust but rough: the algorithm can
only find the fingers and not a specific region of the finger like a tip or a val-
ley. It can be observed in figure 5 that for an almost flat angle of the small
finger, the accuracy is near twenty pixels (frame 0 and 160), for a small angle
(between frame 50 and 160) it is approximately thirty pixels, and can go over
a difference of sixty pixels for a large angle (after frame 160). This is due to
the computation method, when the finger is angle, the end of the section that
is in straight line with the palm will create a maximum and not the real finger
end. This algorithm is consequently efficient only to find fingers or finger ends
when the fingers are not angled. This algorithm is therefore neither accurate nor
precise.

3.2 Latency and Resources Usage

The latency of each of the algorithms is determined by computing the delay
between the evaluation of a frame and the output of its results. If the output
rate is the same as the input rate (expressed in terms of the amount of time lapse
between two input frames), no significant delay is generated by the evaluation
part of the algorithm. In order to know the processing rate and the resource
usage of the evaluation algorithm, all screen or file outputs were turned off.
Table 1 displays the CPU (central processing unit) usage for each algorithm. The
range is the observed minimum and maximum CPU usage percent throughout
the duration of the test. The mode is the most frequently observed percentage.
Table 1 shows that all the algorithms can be used in real time since no significant

Table 1. CPU usage of the three methods

Input Algorithms CPU Usage CPU Usage Output
Rate Range Mode Rate

Projection Signatures 10-18% 15%
33 ms Circular Hough Transform 38-77% 55% 33 ms

Geometric Properties 16-45% 30%

latency as been observed. Projection signature is extremely easy on computer
resource with a mode of 15% of CPU usage and peaks ranging between 10 and
18%. Geometric properties is a bit more demanding with a mode of 30%. The
poor performance of the circular Hough transform is probably due to the usage of
the traditional algorithm [3] [10] that requires a lot of computation and storage
for the accumulator cells, more modern implementations using probabilistic and
heuristic approaches to optimize the algorithm performance exist [5] and are
known to detect circles with the same degree of accuracy and precision.
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4 Results and Discussion

We tested the previously presented algorithms with video recordings of the left
and right hand of 5 users (3 females and 2 males, all adults). Results of these
preliminary tests were coherent among all users and are qualitatively summarized
in Table 2.

Table 2. Algorithms characteristics (+ → good to excellent, 0 → neutral to good,
- → poor to neutral

Projection Geometric Circular Color
Signatures Properties Hough Transform Markers

Locates fingers + + + +
Locates fingertips - 0 0 +
Locates finger ends - + + +
and valleys
Distinguishes between - + 0 +
finger ends and valleys
Works with - - 0 0
complex background
Works in real + + + +
time (low latency)
Computer resources + + - +
usage
Accuracy - + + +
Precision - + + +
Works with unknown - + + +
hand orientation
Works with unknown + + 0 +
fingertips radius

All the presented algorithms have succeeded, in various degrees, in detecting
each finger. The projection signatures algorithm can only roughly identify a fin-
ger, but the circular Hough transform and geometric properties algorithms can
find both finger intersections and finger end points, it is important to note that
in the case where finger are folded, the end points dont correspond to the finger-
tips. The geometric properties algorithm outputs intersections and extremities
in two distinct sets, but the circular Hough transform algorithm cannot make
this distinction. The marker algorithm is the only one that can distinguish the
various joints of the finger when different colors are used.

The projection signatures and geometric properties algorithms need a strong
segmentation step prior to their application. The circular Hough transform, when
combined with edge detection instead of contour, can work in complex environ-
ments, but some confusion can occur if other circular shapes of the size of the
fingertip radius are present. Color markers can be used in complex backgrounds
if the colors are properly chosen but are sensitive to light variation.
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At 25fps all the algorithms output results without any significant delay; the
input and output rate is the same. However, the circular Hough transform algo-
rithm is much more demanding on CPU usage. This characteristic might limit its
use when it is combined with pose and gesture recognition algorithms. The geo-
metric properties and the circular Hough transform algorithms have similar and
acceptable accuracy and precision values. The projection signatures algorithm
cannot be used if these two characteristics are important.

The projection signatures algorithm can only be used in a controlled environ-
ment where the hand orientation is known and where finger angles dont vary
to much from the straight line. The circular Hough transform algorithm needs
previous knowledge of the fingertip radius or the palm radius. It can work in
an environment where the distance from the video camera will change only if
a method to estimate these radii is attached to it [2]. The geometric properties
algorithm does not need any prior knowledge to be performed.

5 Conclusion

This article presented three algorithms to track fingers in two-dimensional video
images. These algorithms have been compared to one another and evaluated
with respect to a fourth algorithm that uses color markers to track the fingers.
All the algorithms were implemented and tested in EyesWeb. Results relative to
the precision, accuracy, latency and computer resource usage of each of the algo-
rithms showed that geometric properties and circular Hough transform are the
two algorithms with the more potential. The circular Hough transform should
be preferred when a clean segmentation from the background is impossible while
the geometric properties algorithm should be use when the fingertips radius is
unknown and when information on both the finger ends and valley is required.
Projection signature can be used as a fast algorithm to roughly obtained finger
position. The choice of an algorithm should, therefore, depend on the applica-
tion and on the setup environment. Future users should refer to the algorithms
characteristics and constraints in table 2 to chose the appropriate one. It is also
important to note that in this paper, the algorithms were tested alone and in
a controlled environment. Consequently, the choice of an algorithm can also be
influenced by the system in which it is supposed to work. As an example, the
segmentation algorithm used in the pre-processing step and the pose or ges-
ture algorithm used in the post-processing step can create constraints that will
dictate the usage of a finger-tracking algorithm.

Acknowledgments

This work has been partially supported by funding from the Qubec Government
(PBCSE) and the Italian Ministry of Foreign Affairs to Anne-Marie Burns and
by the EU 6 FP IST ENACTIVE Network of Excellence to both authors. The
authors would like to thank all students and employees of InfoMus lab who ”gave



Finger Tracking Methods Using EyesWeb 167

their hands” for the realization of the tests. Special thanks go to Ginevra Castel-
lano for her help in compiling the results, Gualtiero Volpe for his contribution to
the development of the EyesWeb blocks, Pascal Bélanger for English proofread-
ing, and Marcelo Wanderley for proofreading and constructively commenting on
this article. Anne-Marie Burns would also like to thank Antonio Camurri for
welcoming her as an internship student researcher and Marcelo Wanderley for
initiating and making this collaboration project possible.

References

1. Camurri M., Mazzarino B., and Volpe G.: Analysis of Expressive Gesture: The
EyesWeb Expressive Gesture processing Library, in Gesture-based Communication
in Human-Computer Interaction. LNAI 2915, Springer Verlag (2004) 460-467

2. Chan, S. C.: Hand Gesture Recognition, [http://www.cim.mcgill.ca/˜schan19/
research/research.html], Center for Intelligent Machines, McGill University (2004).

3. Duda, S. R. D. and Hart, P. E.: Use of the Hough Transform to Detect Lines and
Curves in Pictures in Communications of the Association of Computing Machinery,
15, 11-15, (1972).

4. Hemmi, K.: On the Detecting Method of Fingertip Positions Using the Circular
Hough Transform in Proceeding of the 5th Asia-Pacific Conference on Control and
Measurement, (2002).

5. Illingworth, J., and Kittler, J.: A Survey of the Hough Transform in Computer
Vision, Graphics, and Image Processing, 44, 87-116, (1988).

6. Kohler M.:Vision Based Hand Gesture Recognition Systems, [http://ls7-
www.cs.uni-dortmund.de/research/gesture/vbgr-table.html], Computer Graphics,
University of Dortmund.

7. Koike, H., Sato, Y., and Kobayashi, Y.: Integrating Paper and Digital Information
on EnhancedDesk: A Method for Realtime Finger Tracking on an Augmented Desk
System, ACM Transaction on Computer-Human Interaction, vol. 8, no. 4, 307-322,
(2001).

8. Letessier, J., and Brard F.: Visual Tracking of Bare Fingers for Interactive Surfaces,
Seventeenth Annual ACM Symposium on User Interface Software and Technology,
vol. 6, issue 2, 119-122, (2004).

9. Pavlovic V. I., Sharma R., and Huang T. S.: Visual Interpretation of Hand Ges-
tures for Human-Computer Interaction: A Review, IEEE Transactions on pattern
analysis and machine intelligence, vol. 19, no. 7, 677-695, (1997).

10. Schulze, M. A.: Cicular Hough Transform A Java Applet Demonstration,
[http://www.markschulze.net/java/hough/], (2003).
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Abstract. This study proposes a roadmap for the creation and specifi-
cation of a virtual humanoid capable of performing expressive gestures
in real time. We present a gesture motion data acquisition protocol ca-
pable of handling the main articulators involved in human expressive
gesture (whole body, fingers and face). The focus is then shifted to the
postprocessing of captured data leading to a motion database comply-
ing with our motion specification language and capable of feeding data
driven animation techniques.

Issues. Embodying a virtual humanoid with expressive gestures raises many
problems such as computation-cost efficiency, realism and level of expressive-
ness, or high level specification of expressive gesture [1]. Here, we focus on the
acquisition of motion capture data from the main articulators involved in com-
municative gesture (whole body, face mimics and finger motion). We then show
how acquired data are postprocessed in order to build a database compatible
with high level gesture specification and capable of feeding real time data-driven
motion synthesis techniques. A recent automatic segmentation algorithm based
on Principal Component Analysis (PCA) is then evaluated.

Motion acquisition protocol. The motion data acquisition protocol is de-
signed to capture the whole range of articulators involved in order to produce
human communicative gestures. This protocol relies on two complementary tech-
niques, as shown in figure 1. The first technique aims at capturing facial and
body motions and relies on a set of reflective markers placed on standardized
anatomical landmarks and a network of 12 Vicon-MX 1 infrared cameras located
all around the subject. The aim of the second technique is to capture finger
motion thanks to pair of Cybergloves2 measuring finger abduction and flexion.
This technique is well-suited to finger motion, as it is robust by finger occlusions
that may appear during the signing performance. The two sets of data acquired
are post processed, synchronized and merged offline.
1 http://www.vicon.com/products/viconmx.html
2 http://www.immersion.com/3d/products/cyberglove.php
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Fig. 1. Motion acquisition protocol

The resulting dataset describes the evolution along n frames of a skeleton
hierarchy composed of k joints. For each joint i, a set of li degrees of freedom is
defined, 1 ≤ li ≤ 3. The size of a posture vector v can then be easily computed.

size(v) =
k∑

i=0

li

Table 1 sums up the composition of a posture vector according to our represen-
tation model.

Table 1. Detail of a posture vector

segment coord type number of joints DOF per joint size of segment subvector
body angular 18 1 ≤ l ≤ 3 54
hand angular 18 1 ≤ l ≤ 3 25
total angular 36 — 79

Processing motion data. One of the early steps of data processing consists of
segmenting motion into relevant chunks. Extracted chunks must be short enough
to guarantee the synthesis of a wide range of new motions conveying sufficient
meaning to comply with high level task oriented specification language [2].

Even though it has been shown that low level motion segmentation can be
achieved in a straightforward manner [7][4], Hodgins and al. recently showed
that higher level motion segmentation could be efficiently achieved thanks to
the principal component analysis (PCA) approach. According to the results they
presented [6], PCA segmentation method applied on simple motions represent-
ing typical human activities, such as walking, running, sitting, standing idle, etc.
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achieved very good results: up to 80% precision call for simple body movements.
This algorithm is based on the assumption that the intrinsic dimensionality of a
motion sequence containing a single behavior should be smaller than the intrin-
sic dimensionality of a motion sequence containing multiple behaviors. Thus,
from one motion sequence to another, the reconstruction error of the frames
projected onto the optimal hyperplane of dimension r increases rapidly, for a
fixed r. Figure 2 illustrates the motion transition detection between two hand
configurations.

Fig. 2. Automatic segmentation using PCA. Cut is performed when derivative of error
reaches three standard deviation from the average.

Evaluating the PCA approach to hand motion segmentation. We apply
the PCA-based segmentation algorithm allocated to a sequence representing a
non signer subject finger spelling French dactylologic alphabet [3]. The sequence
is 7200 frames long with 120 frames per second. To carry out PCA, decomposition
is thus performed on a 7200 × 25 matrix extracted from the total motion data
and representing the right hand motion. According to our experiments, the ratio
Er which indicates how much information is retained by projecting the frames
onto the optimal r-dimensional hyperplane reaches acceptable range [6] when
r ≤ 3 for all the 20 segments we extracted manually from the alphabet spelling
sequence. Further experiments led us to set the window parameter k originally
fixed at 2 seconds to 1.3 seconds, considering that hand motion is much faster
than body motion.

Fig. 3. Segmentation results

Results. In parallel to automated PCA based hand motion segmentation, a
human observer manually segmented the finger spelling sequence by identifying
probable zones of motion transition. Figure 3 compares how the two methods
designated motion separation zones. The human observer identified 27 zones
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while the PCA based motion segmentation algorithm identified 29 zones. Among
those, 22 zones were overlapping.

Conclusion. We have presented a motion acquisition framework designed to
manage several articulators involved in communicative gesture and in sign lan-
guage performance. We then rely on the data provided by this framework to
evaluate a recent automatic motion segmentation technique based on principal
component analysis of hand motion. This method proves to be capable of solving
high level segmentation required by our needs. In the near future, we wish to
extend this technique to the whole of upper body motion. In parallel, we would
like to provide a better evaluation framework based on data acquired and an-
notated by French sign language specialists. Such a framework will provide us
with the grounds required to perform reliable motion analysis and performance
comparisons.
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Abstract. This paper presents a novel method for estimating 3D human body 
pose from stereo image sequences based on top-down learning. Human body 
pose is represented by a linear combination of prototypes of 2D depth images 
and their corresponding 3D body models in terms of the position of a 
predetermined set of joints. With a 2D depth image, we can estimate optimal 
coefficients for a linear combination of prototypes of the 2D depth images by 
solving least square minimization. The 3D body model of the input depth image 
is obtained by applying the estimated coefficients to the corresponding 3D body 
model of prototypes. In the learning stage, the proposed method is 
hierarchically constructed by classifying the training data into several clusters 
with a silhouette images and a depth images recursively. Also, in the estimating 
stage, the proposed method hierarchically estimates 3D human body pose with 
a silhouette image and a depth image. The experimental results show that our 
method can be efficient and effective for estimating 3D human body pose. 

1   Introduction 

Recognizing body gesture by estimating human body pose is one of the most difficult 
and commonly occurring problems in computer vision system. A number of 
researches have been developed for estimating and reconstructing 2D or 3D body 
pose [1, 2, 4, 5]. In this paper, we solve the problem of estimating 3D human body 
pose using a hierarchical learning method. The differences of our approach are: the 
2D depth images and their corresponding 3D positions of body components are used 
to learn and the depth images are used to overcome ill-pose problem due to the similar 
silhouette images are generated by different human’s body pose. 

2   Gesture Representation 

In order to estimate 3D human body pose from continuous depth images, we used a 
learning based approach. If we have sufficiently large amount of pairs of a depth and 
                                                           
*  To whom all correspondence should be addressed. This research was supported by the 

Intelligent Robotics Development Program, one of the 21st Century Frontier R&D Programs 
funded by the Ministry of Commerce, Industry and Energy of Korea. 



 Estimating 3D Human Body Pose from Stereo Image Sequences 173 

its 3D body model as prototypes of human gesture, we can estimate an input 2D depth 
image by a linear combination of prototypes of 2D depth images. Then we can obtain 
its estimated 3D body model by applying the estimated coefficients to the 
corresponding 3D body model of prototypes as shown in Fig. 1. Our goal is to find an 
optimal parameter set α  which best estimates the 3D human body pose from a given 
depth image. The proposed method is based on the statistical analysis of a number of 
prototypes of the 2D images are projected from 3D human model. The depth image is 
represented by a vector T

nddd ),...,( 1 ′′= , where n is the number of pixels in the image 

and d ′  is a value of a pixel in the depth image. The 3D body model is represented by 
a vector T

qqq zyxzyxp )),,(),...,,,(( 111= , where x, y and z are the position of body joint 

in the 3D world. Eq. (1) explains training data. 
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where m  is the number of prototypes and T
nsss ),...,( 1 ′′=  is a silhouette image. 

A 2D depth image is represented by a linear combination of a number of 
prototypes of 2D depth images and its 3D body model is represented by estimated 
coefficients to the corresponding 3D body model of prototypes by such as: 
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Fig. 1. Basic idea of the proposed method 

3   Estimation of 3D Human Body Pose 

To estimate 3D human body pose, we use three-level hierarchical model. In the first 
level, we estimate 3D human body with a silhouette history image(SHI) [6] applied 
spatio-temporal features which include continuous silhouette information. We 
compare the input silhouette image with the prototypes of 2D silhouette images, and 
select the prototype has the minimal distance. We use template matching to compare 
two silhouette images. After the first level, we estimate 3D human body with a 
silhouette image in the sub-cluster of current level. In the bottom level, we estimate 
3D human body pose by using linear combination of prototypes of 2D depth images. 
Our estimation process consists of five-steps. 



174 H.-D. Yang, S.-K. Park, and S.-W. Lee 

Step 1. Make a silhouette and a depth image applied spatio-temporal features from 
continuous silhouette images and normalize input data. 

Step 2. Match a silhouette image and mean value of cluster at higher level of bottom 
level or estimate a parameter set  to reconstruct silhouette image from the 
given depth image at bottom level. 

Step 3.  Estimate 3D human model with the parameter set   estimated at Step 2. 
Step 4. Compare the estimated 3D human model with the training data. 
Step 5.  Repeat Step 2, 3 and 4 for all levels of the hierarchical statistical model from 

top to bottom level. 

4   Experimental Results and Analysis 

For training the proposed method, we generated approximately 100,000 pairs  
of silhouette images and their 3D human models. The silhouette images are 170 x 190 

……

… … … … … … …

 

Fig. 2. Examples of the estimated 3D human body pose with sitting on a char sequence of the 
FBG database 

Frame number Frame number

Joint angle Joint angle

 

Fig. 3. Temporal curve of joint angles with the sequence in Fig. 2 
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pixels and their 3D human models are 17 joints in the 3D world. For testing the 
performance of our method, we used KU Gesture database [3]. Fig. 2 shows the 
estimated results which obtained in several images come from the FBG database at 
front view. The result of estimated 3D human body model represented front view, left 
45 degree view and right 45 degree view of 3D human body model respectively.  
Fig. 3 shows the estimated angles of the left upper leg and the right upper leg with 
walking at a place sequence. As shown in Fig 3, the estimated joint angle at frame 7, 
14, 27 are changed rapidly, because this region is the boundary of clustering 
algorithm. 

5   Conclusion and Further Research 

In this paper, we proposed an efficient method for estimating 3D human body pose 
from stereo image sequences using top-down learning. By applying depth information 
to estimate 3D human body pose, the similar pose in silhouette image cab be 
estimated different 3D human body pose. 

Several interesting problem remains for further research. One topic is how to 
overcome the various size of real human body to a 3D human body model and the 
error of silhouette extraction. The other topic is how to solve extending the number of 
characteristic views. Using additive low-level information such as color, edge 
information and tracking extracted body component, we can analyze the relationship 
of human body components. 
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Abstract. In this paper we explore the potential of Prioritized Inverse Kinemat-
ics for motion capture and postural control. We have two goals in mind: reducing 
the number of sensors to improve the usability of such systems, and allowing  
interactions with the environment such as manipulating objects or managing  
collisions on the fly. To do so, we enforce some general constraints such as  
balance or others that we can infer from the intended movement structure. On 
one hand we may loose part of the expressiveness of the original movement but 
this is the price to pay to ensure more precise interactions with the environment. 

1   Introduction 

Until now the exploitation of real-time motion capture of full body human movements 
has been limited to niche applications such as the expressive animation of a virtual 
character in a live show. Multiple factors hinder a wider adoption of full body move-
ment as a powerful means for specifying and controlling the posture of a human me-
chanical model. Among others we can cite: the limited acquisition space and sensor 
precision, the spatial distortions, the high dimension of the posture space, and the 
modeling approximations in the mechanical model of the human body. These sources 
of errors accumulate and result in a low spatial control quality, hence making this 
approach not as usable as expected for evaluating complex human interaction with 
objects or with the environment. In the present paper we explore the potential of Pri-
oritized Inverse Kinematics for motion capture and postural control, with Virtual 
Prototyping applications in mind. Our three immediate goals can be stated as follows: 
first reduce the number of sensors to improve the user comfort, second guarantee the 
correct recovery of the user manipulation of objects, and third integrate the postural 
control with automatic collision management. Our objective is to offer an intuitive 
and interactive control mode allowing any user to exploit body movements to quickly 
produce and manipulate human postures and movements. To do so, we enforce some 
general constraints such as balance or others that we can infer from the intended 
movement structure. In short, our approach is a trade-off that exchanges part of the 
expressiveness of the original movement in return for more precise interactions with 
the environment. 
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In the following sections, we first provide a classification of  Inverse Kinematics 
techniques that have been used for real-time human motion capture, and we briefly 
recall the architecture of Prioritized Inverse Kinematics (PIK). Then we discuss  
the detection and handling of three problems that are critical for the success of intuitive 
user control with numeric IK: local postural singularities, self-collisions, and collisions 
with the environment. This latter case leads to an extension of the PIK architecture  
to minimize instabilities through the concept of observers. The paper ends with two  
case studies: recovering the movement of a musician from reduced sensor data, and  
automatically managing the (smooth) collisions with the environment in a reach task.  

2   Background 

2.1   IK Techniques for Motion Capture 

Computer-assisted human motion capture can be traced back to the sixties as recalled 
by Sturman in his “Computer puppetry” article from 1998 [1]. The technical and 
computing complexity of this task has kept it mostly confined to niche applications 
such as the expressive animation of a virtual character in a live show. For these rea-
sons the first systems were relying on a light exoskeleton mounted on the body and 
which delivered directly a measure of  the main joint angles. Nowadays, the comput-
ing power being orders of magnitudes greater than in this pioneering time, new oppor-
tunities arise to exploit more sophisticated techniques for a greater comfort of the 
performer of the movement. Hence a broader range of applications may benefit from 
the integration of such type of interaction through body motion, e.g. for controlling a 
virtual mannequin in Ergonomics applications. We propose in this section a simple 
classification and comparison of the techniques used for reconstructing the skeleton 
configuration from sensor data. Modern sensors tend to be light and wireless and 
allow to obtain a 3D position (optical markers) sometimes together with a 3D orienta-
tion (magnetic sensors) with respect to a reference coordinate system. Evaluating the 
posture of a human body (i.e. its current joint state),  from a set of such measures is 
often called the Inverse Kinematics problem (IK in short). There exist four major 
families of  Inverse Kinematics algorithms: 

Exact Analytic IK: Each body segment is equipped with a sufficient number of sen-
sors so that its 3D position and orientation can be computed, hence leading to an un-
ambiguous extraction of the joints’ state from the relative transformation between 
successive segments [2]. Although fast, this approach still requires a significant num-
ber of sensors which reduces the comfort and increases its price. 

Under Constrained Analytic IK: Only the 3D location of the pelvis, the torso and 
body extremities is captured (wrist, ankle, maybe the head). This allows to compute 
the 3D location of hip and shoulder joints and to obtain the arm and leg posture from 
an analytic formula described by Tolani [3]. In this approach, the swivel angle that 
exists around the line linking the shoulder to the wrist (and the hip to the ankle) can-
not be determined without additional information; application-dependant heuristics 
are necessary to reconstruct a correct posture. Its fast computation makes this ap-
proach one of the most popular for motion retargeting. 
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Individualized Numeric IK: In the following approaches, the term effector denotes a 
coordinate system attached to the body (e.g. in one hand) that we want to attract to a 
goal position and/or orientation given by sensors. The Cyclic Coordinate Descent 
approach (CCD) searches for an optimal solution independently for each joint [4]. 
This algorithm has to be iterated to guarantee the convergence. 

The Transpose Jacobian approach requires the repeated evaluation of the Jacobian 
J gathering the partial derivatives of the effector position and/or orientation with 
respect to the joint angle variables. In the case of an effector submitted to a position 
constraint, iteratively evaluating the product of the position error vector, noted Δx, 
with the transposed Position Jacobian JT provides a joint variation vector that, once 
added to the current joint state, leads also to a convergence towards one solution pos-
ture [5]. 

Integrated Numeric IK: Here the Jacobian matrix J is viewed as a linearized ap-
proximation of the IK problem. We can obtain a locally optimal solution with its 
pseudo-inverse, noted J+. For this approach to be valid only small error vectors Δx can 
be corrected at a time, therefore also requiring its integration within a convergence 
loop. Our tests have shown that despite its much higher computing cost per iteration, 
this approach is equivalent in terms of performance to the Transpose Jacobian ap-
proach [6] as it requires much less iterations to converge.  

One key property of the pseudo-inverse is the possibility to build projection opera-
tors allowing to enforce a strict hierarchy among constraints. Indeed, all constraints 
do not have the same importance when searching for a solution in the joint space. For 
example, a position constraint on the centre of mass effector can ensure the balance of 
the posture [6], hence making it more critical than a position constraint attracting a 
hand effector towards a desired position. So it is important to be able to define prior-
ity levels among constraints, especially when they act in opposite directions in the 
joint space. In the next section, we examine how Prioritized Inverse Kinematics 
works and how to build the solution posture for a hierarchy of constraints. 

2.2   Architecture of Prioritized Inverse Kinematics 

Conceptual Analogy: To understand the following conceptual analogy it is necessary 
to be aware of  the redundancy of the system, as the dimension N of the joint space is 
usually far greater than the dimension M of  the constraint space. In practice it means 
that there generally exist an infinite number of joint variations that can achieve a 
given effector position variation to meet a constraint C. For example one can think of 
the set of postures that allow one hand to remain fixed in space. 

In the drawings from Fig. 1 we illustrate the concept of  priority hierarchy as it is 
conceptually enforced by Prioritized Inverse Kinematics. We represent the whole set 
of possible joint variations as a big ellipse while smaller shapes inside this ellipse 
represent joint variation subsets Si that meet some constraints Ci. When two con-
straints are conflicting, their associated solution subsets do not intersect. In those 
cases the distance between the retained solution (a gray dot) and the closest point of 
any shape can be interpreted as a measure of the remaining error for the associated 
constraints.  Fig.  1 illustrates the ideal case where the constraints do not conflict (left)  
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Fig. 1. The solution subsets S1 and S2 (respectively for constraints C1 and C2) may intersect 
(left); in case they don’t the weighting approach provides a compromise solution (middle). The 
priority-based approach provides a solution belonging to the higher priority subset, here S1, that 
minimizes the remaining error for C2 (right). 

 

Fig. 2. An infinite number of solutions from  S1 may equally minimize the error for the lower 
priority constraint C2 (left). If S3 is the solution subset of the lowest priority constraint, the 
solution belongs to S1 while minimizing the errors for C2 and C3 (middle). The C2 error 
minimization has a higher priority than the C3 error minimization (right). 

           

Fig. 3. The solution subset S2 becomes larger when more joints are recruited for satisfying C2; 
as a consequence a solution is found that also satisfies C3 while respecting the hierarchy of 
constraints (left = small joint recruiting, right = large joint recruiting) 

and compares the two possible approaches when they conflict: weighting minimiza-
tion resulting in a compromise solution (middle) or prioritized solution favoring the 
constraint C1 while minimizing the remaining error for C2 (right).  

In Fig. 2 we highlight the fact that an infinite number of  solutions may exist within 
S1 that minimize the error for C2 (left). In case a third constraint C3 of lowest priority 
becomes active and conflicts with C1 and C2, the retained solution minimizes both 
errors (middle). If the error minimizations also conflict, then the minimization of the 
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C2 error has the higher priority than the one of C3 (right). In the last conceptual  
drawings from Fig. 3 we want to stress that a solution subset Si becomes “larger” as 
more joints are recruited for building the Jacobian associated to the constraint Ci. As a 
consequence, the retained solution may find solutions that meet more constraints,  
i.e. more synergistic solutions. For example in the left drawing a small recruiting for 
C2 leads to a solution meeting only C1 while a larger recruiting leads to a solution 
meeting both C1 and C3 (right). 

Building the Prioritized IK Solution: We provide here only a brief overview as the 
full development of the equations can be found in [6]. Basically it relies on the 
equation derived by Hanafusa for two priority levels, and generalized by Slotine et al. 
for an arbitrary number of priority levels. Baerlocher has reduced the complexity of 
the projection operator update (all relevant references can be found in [6]). 

 

Fig. 4. Construction of the low priority contribution in a context of two scalar Cartesian con-
straints Δx1 (high priority) and Δx2 (low priority) 

First Fig. 4 illustrates a simplified case of Hanafusa’s solution with two one-
dimensional Cartesian contraints C1 (high priority) and C2 (low priority), requesting 
respectively their constraint variations Δx1 and Δx2. It stresses how the one-
dimensional high priority solution modifies the contribution of the low priority  
solution; first the term on the right of the equation is a compensation for what is  
already achieved in the high priority solution for the low priority constraint Δx2. Then, 
it exploits the definition of the Null Space N(J1) of the linear transformation J1 which 
states that any vector belonging to this subspace is transformed into the null vector by 
J1. In concrete terms choosing any of these vectors as joint variation solution does not 
perturb Δx1. So the purpose of the term of the left in Fig. 4 is to restrict the low  
priority Jacobian J2 to the range of N(J1). Finally multiplying the right term with the 
pseudo-inverse of the left term provides the optimal low priority contribution that can 
be added to the high priority solution. 
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We now briefly describe how the two priority level architecture generalizes to an 
arbitrary number of priority levels p. For the sake of clarity we suppose that we have a 
set of  p constraints {Ci} each with an individual priority level indicated by i (from 1 
to p, 1 being the priority of highest rank). Let Δxi be the desired constraint variation 
for Ci. We denote by

iJ the Jacobian matrix gathering the partial derivatives {δxi /δθ}. 

We build the joint space solution by accumulating the contribution of each priority 
level into to a joint variation vector Δθ as documented on Fig. 5. For each passage in 
this priority loop, we first compensate the desired constraint variation Δxi by subtract-
ing the influence of all higher priority tasks (step a). 

 

Fig. 5. Iterative accumulation of  each priority level i contribution to the complete solution Δθ,  
from the highest priority (i=1) to the lowest (i=p), with an additional lowest level contribution 
Δα directly expressed in the joint variation space (step e) 

A second preparatory stage (step b) is to restrict the Jacobian Ji to the range of  the 
Null Space N(JA) of all higher priority constraints (from 1 to i-1). This Null Space is 
defined through an additional Jacobian matrix, called the Augmented Jacobian and 
noted JA that simply piles up all the individual constraint Jacobians from level 1 to 
level i-1 into one matrix. The associated projection operator PN(JA) projects any vector 
from the joint variation space onto N(JA). Step c accumulates the contribution of the 
level i by multiplying the compensated constraint variation with the damped pseudo 
inverse of the restricted Jacobian. The damping factor λi is required for stability rea-
sons around singular configurations (see [6] for details). The last step within the loop 
is the update of the projection operator PN(JA) for restricting the next lower priority 
level constraint (step d). Once the priority loop is completed it is still possible to add 
the contribution of a joint variation vector Δα by projecting it with the lowest level 
projection operator (step e).  
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The priority loop is integrated within two other loops as shown on Fig. 6. Once 
the solution is available we check whether it violates one or more joint limits: If it is 
the case the detected joints are clamped and a new solution is search (see [6] for 
details). The external convergence loop is required as the desired constraint varia-
tions have to be bounded to remain within the validity domain of the first order  
approximation we make.  

 

Fig. 6. Integration of the clamping loop between the internal priority loop (details in Fig. 5) and 
the external convergence loop 

3   Three Critical Issues to Solve 

Our experience has highlighted three key issues to solve for making Prioritized In-
verse Kinematics more user-friendly: 1) the first order approximation greatly reduces 
the  ability to flex the arm and/or the leg when they are fully extended, 2) self-
collisions and 3) the collisions with the environment. The treatment of these three 
problems should be automated as much as possible to relieve the end-user from the 
additional cognitive load of avoiding them. It is also an unpleasant experience to 
obtain counter-intuitive transient behaviors. 

3.1   Local Postural Singularities 

A singularity occurs when the rank of a Jacobian decreases due to the co-linearity of 
its column vectors. For example, in Fig. 7, when all segments of a chain align, their 
range space reduces from 2D to 1D. For a local postural singularity the rank of the 
Jacobian may not decrease; it is sufficient for two successive segments to be aligned 
to enter in such “sticky” postural state. This is easy to understand on Fig.7 (right) as 
no joint variation can be found to move away from the base (that’s the intuitive way 
we understand a singularity) but also to move toward the base (this is rather counter-
intuitive). As a consequence, once such a state is reached it tends to last during subse-
quent interactions, to the irritation of the user.  
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Fig. 7. The position of the chain tip effector can be controlled in 2D when the posture is non-
singular (left); when in a singular posture its Jacobian becomes of rank 1 only (middle) thus 
preventing the chain tip to reach goals such as the points 1 or 2 (right) 

Posture Attraction: The first solution that comes to mind is to attract the posture 
toward a slightly folded posture and enforce this attraction within the vector Δα at the 
lowest priority level (Fig 5e). However, being at such a low priority level, there is a 
risk that it doesn’t get to be enforced. We illustrate this approach in the musician case 
study for handling the leg full extension. 

The Concept of Observer: We propose instead the concept of observer to detect a 
local singularity and avoid it when necessary. Indeed a fully extended posture, even if 
singular, may serve some functional purpose and should not be always avoided. This 
is the reason why an observer can be viewed as a dormant effector that remains inac-
tive as long as a necessary condition is not met. The triggering condition is to identify 
the case of the goal 2 in Fig. 7 (right), which consists in detecting that the segments 
are aligned and that there is a desired constraint variation oriented toward the base of 
the aligned segments. When such condition is met, a high-priority folding constraint 
is dynamically inserted in the hierarchy of constraints at the highest level.  

3.2   Self-collision Avoidance 

Even if individual joint limits are carefully designed to avoid unrealistic or unfeasible 
configurations, the fact is that some self collisions may occur when controlling a 
human body with a small number of sensors (the same problem arises with the under-
constrained analytic IK). For example, in the musician case study the player’s arms 
and torso often interpenetrate each other. Two approaches can be proposed: 

Posture Attraction: Exploiting the low priority optimization task Δα can be a solu-
tion here too. All we have to do is adjust the goal posture so that the arms remain 
slightly away from the torso, thus preventing potential collisions from taking place. 
Note that this solution to the self collision problem does not penalize the performance, 
as we already exploit it to avoid a local singularity. On the negative side introducing 
such a goal posture may alter the expressiveness of the captured movement by impos-
ing a preferred posture. 

Repulsive Observers: Some dormant effectors can be created on the locations  
most likely to enter in collision with another body part, e.g. on the elbows. These 
constraints can be dynamically activated with a high priority when the effector  
location is penetrating other body parts, hence enforcing a strict Cartesian inequality 
constraint. Such effector is more effective when controlling only one translation  
dimension along the normal at the point of collision. This approach does indeed work, 
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but is significantly more expensive than the first one. We develop further the concept 
of observer in the next section. 

3.3   Collision Avoidance with the Environment 

Our key requirement is to provide a real-time method, therefore we have retained an 
approach capable of preventing the collision of a reasonable number of englobing 
solid primitives (sphere, segment). Instead of  enforcing strict Cartesian inequality as 
outlined in the previous section, we prefer to extend the concept of observer and 
model collision management through progressive Cartesian inequality constraints. 
Basically, we want to anticipate the collision and alter the hierarchy of prioritized 
constraints before any hard collision occurs. For this purpose, any obstacle primitive 
is surrounded by a smooth collision zone in which we progressively alter the desired 
displacement of penetrating effectors and observers. A viscosity factor damps the 
displacement component along the normal of the obstacle but only when moving 
toward the obstacle. Fig 8. summarizes the integration of the observers management 
in the general Prioritized Inverse Kinematics architecture. For each new convergence 
step, we first process the regular effectors, then we check whether one or more ob-
server enter the obstacles or their smooth collision zones. If it is the case they are 
temporarily upgraded to high priority effector with the altered displacement as desired 
constraint variation, and the current step is re-evaluated. Such re-evaluation is made 
until no new effector or observer is detected as colliding. Full details of this approach 
can be found in [7]. 

Initialization of Observers’ colliding status to false

One IK iteration on current Effectors/Observers
. Control of Goal-oriented Effectors

including the smooth collision management
. Compute only the Jacobian of Observers

Compute first order approximation of 
Observers’ displacement with Δxobs = Jobs Δθ

IK solution: Δθ

Smooth collision management on  Δxobs

At least one colliding Observer ?
yes

no

switch colliding 
Observers status to 
Goal-oriented Effectors
with:
. Highest priority to those
entering an obstacle

. Lowest priority to those 
entering the collision
management zone

b

a

c

d

e

f

Constraints met ?
yesnoConvergence loop

Collision loop

 

Fig. 8. Integration of the progressive Cartesian inequality constraints through observers in the 
general Prioritized Inverse Kinematics Architecture; both the priority and the clamping loops 
are included in stage b 

4   Case Studies 

4.1   Believable Musician Movement Recovery from Reduced Sensor Data 

We faced the following challenge: a professional performer played the clarinet but  
her motion was captured using only six positional sensors: two for the ends of the 
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clarinet, and the remaining four for the head, shoulder, hip and knee of the player. All 
the sensors are located in the right side of the body. The amount of data provided by 
this set of sensors is insufficient for a traditional motion recovery method.  

We have explored the use of the Prioritized Inverse Kinematics to reconstruct the 
original motion, at least to the extent that its main features are preserved. Table 1 
gathers all the constraints that have been defined together with their priority level. We 
have already justified some of them in section 3; for the others the reader can find all 
the details in [8]. We simply illustrate the performances of our approach on a very 
specific expressive movement shown on Fig. 9 (first row of images). The second row 
contains images of the reconstructed movement in a real-time context where only one 
convergence step is allowed per sampled sensor data. One can notice a small lag of 
the hands with respect to their goal on the instrument; the feet constraints are also 
loosely met (more visible on the animation). These artifacts disappear when allowing 
three convergence step per sensor data as can be seen on the third row of images.  

Table 1. Constraints and associated priority rank for the musician movement recovery 

Constraint Dimension Total 
dimension 

Priority 
rank 

Keep the feet fixed on the ground (2 effectors/foot 
at heel and toe locations) 

3/effector 12 1 

Project center of mass between the feet  2 2 2 
Place both hands on the clarinet 3/hand 6 3 
Follow head sensor (position only) 3 3 4 
Follow hip sensor (position only) 3 3 4 
Attract toward preferred self-collision avoidance 
and singularity-free posture 

Full joint space Full joint 
space 

5 

       

                                    

                                         

Fig. 9. An expressive movement (top), real-time (middle) and off-line (bottom) reconstruction 
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4.2   Progressive Cartesian Inequality Constraint 

Fig. 10 shows a simple 15 joint chain reaching with its tip a goal located next to its 
base. A spherical obstacle (inner circle) is placed so close that a severe collision takes 
place if no collision avoidance strategy is applied (Fig. 10a). If we enforce only strict 
inequality constraints then this collision is prevented, as seen in Fig. 10b, but the 
chain gets arbitrarily close to the obstacle. A better result is achieved by the use of our 
progressive inequality constraint (Fig. 10c), in which the smooth collision zone (in-
between the inner and the outer circle) strongly reduces the movement towards the 
obstacle while still allowing to reach the desired goal for the chain tip. 

 
a  b  c 

Fig. 10. (a) No obstacle avoidance. (b) Avoidance of hard collisions only. (c) Smooth inequal-
ity constraints added. 

5   Conclusion 

In this paper we have stressed three key issues faced by IK when used in interactive 
or real-time context with a reduced number of sensors. The musician study has con-
firmed the potential of our approach to recover believable movement from such a 
small set of sensor data if associated with prioritized constraints. Regarding the ex-
ploitation of the observer concept our preliminary results are very promising for the 
challenging context of virtual prototyping where collisions between the body of a 
virtual mannequin and a complex environment are bound to happen. 
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Abstract. We aim at creating an expressive Embodied Conversational
Agent (ECA) and address the problem of synthesizing expressive agent
gestures. In our previous work, we have described the gesture selection
process. In this paper, we present a computational model of gesture qual-
ity. Once a certain gesture has been chosen for execution, how can we
modify it to carry a desired expressive content while retaining its orig-
inal semantics? We characterize bodily expressivity with a small set of
dimensions derived from a review of psychology literature. We provide a
detailed description of the implementation of these dimensions in our
animation system, including our gesture modeling language. We also
demonstrate animations with different expressivity settings in our ex-
isting ECA system. Finally, we describe two user studies that evaluate
the appropriateness of our implementation for each dimension of expres-
sivity as well as the potential of combining these dimensions to create
expressive gestures that reflect communicative intent.

1 Introduction

Embodied Conversational Agents (ECAs) are virtual embodied representations
of humans that communicate multimodally with the user through voice, facial
expression, gaze, gesture, and body movement. Effectiveness of an agent is de-
pendent on her ability to suspend the user’s disbelief during an interaction. To
increase believability and life-likeness of an agent, she has to express emotion
and exhibit personality in a consistent manner [1]. Human individuals differ not
only in their reasoning, their set of beliefs, goals, and their emotional states,
but also in their way of expressing such information through the execution of
specific behaviors. During conversation, expressivity may manifest itself through
gesture selection – which types of gestures are displayed – as well as through
manner of execution – how they are displayed. In this paper we present an aug-
mentation to our GRETA agent architecture that allows for parametric control
of the qualitative aspects of gestures. Execution manner may depend on emo-
tion, personality, culture, role and gender as well as on semantic and pragmatic
aspects of the utterance itself in complex ways. We restrict our attention to
generating phenomenologically accurate behaviors without claiming to correctly
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represent internal processes. The paper is structured as follows: related work is
reviewed in section 2, and our method for parametrizing gesture expressivity is
reviewed in section 3. After outlining the GRETA architecture in section 4, we
devote the majority of the paper to a description of the implementation of the
expressivity parameters in section 5. We conclude by describing the results of
two evaluation studies of our system and pointers to future work in sections 6
and 7.

2 Related Work

Research in gesture synthesis can be divided into systems that address the prob-
lem of gesture selection and systems that address gesture animation. Gesture
selection for agents has mostly been concerned with semantic aspects of human
gesturing, often following McNeill’s method of classification [2]. Cassell et al.
select suitable non-verbal behaviors to accompany user-supplied text based on
a linguistic analysis [3]. Tepper et al. cross the boundary towards gesture ani-
mation by automatically generating iconic gestures from a parametric model [4].
Noot and Ruttkay address the need for inter-subject variability in GESTYLE [5],
which chooses between atomic behaviors based on ‘style dictionaries.’

Gesture animation is concerned with realistic movement generation of an
agent’s arms and hands from an abstract gesture representation language [6, 7].
Often, inverse kinematics techniques are used to calculate wrist trajectories [8].
Other systems allow for modification of existing body animations [9]. Of these,
EMOTE by Chi et al. [10] is most closely related to our work as it also introduces
an intermediate level of parametrization to obtain expressive gestures. EMOTE
implements Laban principles from the dance community, while our system relies
on psychology literature to obtain a set of expressivity parameters. EMOTE acts
as a generic filter on pre-existing behaviors, while we tie behavior modification
into the synthesis stage of gesturing.

3 Expressivity Parameters

We conducted a literature review of social psychology to arrive at a dimensional
characterization of expressivity in human bodily movement. We regard an inter-
mediate level of behavior parametrization as a useful enabling tool to facilitate
the mapping of holistic, qualitative communicative functions such as mood, per-
sonality, and emotion to low-level animation parameters like joint angles. Our
approach is driven by a perceptual standpoint – how expressivity is perceived
by others. That is, we focus only on the surface realizations of movement and
do not attempt to model underlying muscle activation patterns.

Based on an aggregation of the most pertinent studies [11, 12, 13] and our
analysis of a gesture corpus [14], we propose to capture gesture expressivity with
a set of six attributes which we describe below in qualitative terms. As part of
an individualized agent’s definition, personal default values for the expressivity
attributes are defined.
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– Overall Activation: quantity of movement during a conversational turn (e.g.,
passive/static or animated/engaged).

– Spatial Extent : amplitude of movements (amount of space taken up by body)
– Temporal Extent : duration of movements (e.g., quick versus sustained ac-

tions)
– Fluidity: smoothness and continuity of overall movement (e.g., smooth versus

jerky)
– Power : dynamic properties of the movement (e.g., weak versus strong)
– Repetition: tendency to rhythmic repeats of specific movements.

Each of the attributes is float-valued and defined over the interval [−1, 1], where
the zero point corresponds to the actions our generic agent without expressivity
control would perform. Overall Activation is float-valued and ranges from 0 to
1, where 0 corresponds to a complete absence of nonverbal behavior.

Fig. 1. Agent architecture outline

4 Expressive Agent Architecture

GRETA, our multimodal agent, interprets utterance text marked up in APML
with communicative functions [15] to generate synchronized speech, face, gaze
and gesture animations. The engines produce animation data in MPEG4-compli-
ant FAP/BAP format, which in turn drive a facial and skeletal body model in
OpenGL. We briefly review GRETA’s GestureEngine [6] (see Fig. 1) here to
clarify where expressivity modifications are performed. GestureEngine first per-
forms text-to-speech conversion through Festival [16] which provides necessary
phoneme timing for synchronizing gesture to speech. Communicative function
tags which are candidates for gesture matching are extracted in the TurnPlanner.
The GesturePlanner matches communicative function tags to a library of known
prototype gestures and also schedules rest phases when arms are retracted to the
body. The MotorPlanner then concretizes abstract gestures by calculating key
frame joint angles and timing. Finally, a bank of different Interpolators generate
in-between frames to complete the animation.
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To enable the thus-far generic, deterministic architecture for expressivity con-
trol, we augmented different stages of the architecture, which we will describe
in the next section.

5 Implementation: Mapping Expressivity into Gesture
Animation Parameters

Given a particular type of action and a set of values in the expressivity
space, how can we modify non-verbal behavior production to communicate the
appropriate expressive content? We first need a suitable representation for ges-
tures. We strive to preserve the semantic value of each gesture during the ex-
pressivity modifications. We hypothesize that effective strategies have to adjust
behavior on multiple levels – from abstract planning (which type of gesture to
use and whether to use a gesture at all), via gesture phase-level modifications
(whether or not to repeat a stroke), down to adjusting velocity profiles of key
pose transitions.

In the following, let the variables oac, spc, tmp, flt, pwr and rep stand for
the Overall Activation, Spatial Extent, Temporal Extent, Fluidity, Power and
Repetition parameter values we are trying to express.

5.1 Example

We introduce a sample dialog in transcript and APML-annotated form that will
help clarify the expressivity computations we perform later on. The dialog was
transcribed (and slightly edited) from an interview with author/journalist Helen
Gurley Brown on the Open Mind television show1. We selected the following
short utterance – words that coincided with gesture strokes are underlined:

“Whatever works for you, that’s for you. But please don’t tell me what works
for me. Would you just please mind your own business and I’ll mind my business
and let’s get on with the rest of our lives.”

In the video, Hurley Brown performs a deictic reference to the interviewer
(you), overlaid with a beat on the second you. A deictic gesture to herself
with both hands accompanies the word me. After that, a metaphoric rejection
is expressed by moving the right arm from shoulder-level downwards and out
(your business). Finally, a round object in front of her torso is circumscribed to
denote [her] business. We encoded this segment in APML, but for the sake of
brevity only reproduce the beginning here in Figure 2. Text to be spoken by the
agent is highlighted in blue.

5.2 Gesture Specification Language

In the past, we devised an abstract keyframe based scheme for gesture synthe-
sis [6]. The gesture specification language is a sequence of key poses of the action,

1 Publicly available through the Internet Archive: http://www.archive.org/
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Fig. 2. APML Dialog

each of which describes wrist location, palm orientation and hand shape. Sets
of key poses are grouped into the gesture phases defined by McNeill [2]. Our
specification language was augmented by attributes defining which features of a
gesture carry its semantic meaning and are thus invariable, and which features
can be modulated to add expressivity. Description of the temporal aspect of each
gesture was made implicit. Where previously kinematics were fixed through the
frame times of the key frames, timing is now calculated using motion functions.
Let us consider the gesture matched to the deictic pointing towards the user (line
4 of our APML script). This gesture consists of a simple arm movement that
halts on the upper torso and a hand configuration that points at the conversation
partner. The hand is not immediately retracted, but remains in a post-stroke
hold. Figure 3 shows our encoding of this gesture gesture. To conserve space,
frames have been arranged horizontally and are to be read from left to right.

Fig. 3. Sample gesture definition script

The postfix :fixed, highlighted in red, indicates that a particular element of
the gesture must not be modified by expressivity calculations. In the deictic ref-
erence, the agent’s hand points towards the user who is facing the agent through
the screen. Thus the agent should point straight outwards and not besides her-
self. We thus constrain the lateral X coordinate of the arm goal position to be
in the center sector of McNeill’s gesture space [2]. While the duration of a hold
depends on synchronization with adjacent gestures and speech, we explicitly en-
code the presence of a hold since this feature carries semantic weight. Note the
absence of explicit timing information. The Gesture Engine calculates default
durations. While we lose fine grain control compared to earlier explicit timing
information, we gain parametric control over gesture phases as we will describe
in section 5.3.
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5.3 Expressivity Parameters

We now go through each of the identified dimensions of expressivity and explain
how they are implemented. The stages of Figure 1 will be referenced to explain
where gesture modification takes place.

Overall Activation. A filter is applied at the level of the GesturePlanner,
which assigns gesture prototypes to input text mark up tags. Each input tag
carries an intensity attribute that captures how important stressing the tag’s
content through nonverbal signals is – in line 4 of our APML example, the deictic
gesture has an intensity of 0.4. Communicative functions tags for which this
activation attribute does not surpass a given agent’s overall activation threshold
are not matched against the behavior database and no nonverbal behavior is
generated. Thus, in our example, the deictic gesture will only be matched if the
agent has an overall activation threshold ≥ 0.4. A similar principle of activity
filtering was presented and implemented by Cassell et al. in [3].

Spatial Extent. The space in front of the agent that is used for gesturing is
represented as a group of sectors following McNeill’s diagram [2]. Wrist positions
in our gesture language are defined in terms of these sectors. We expand or
condense the size of each sector through asymmetric scaling of sector center
coordinates. For meaningful scaling, we establish sector center coordinates �pi

relative to the agent’s solar plexus. Then the modified sector centers are given by:

�p′i =
[
I �spc
0 1

]
· �pi with : �spc =

⎛⎝ 1.0 + spc · spcagenthoriz

1.0 + spc · spcagentvert

1.0 + spc · spcagentfront

⎞⎠
spcagenthoriz

, spcagentvert , and spcagentfront
are individual scaling factors in the

horizontal, vertical and frontal directions that can define individualized patterns
of space use. To find the location of articulation for a gesture, we first compute
a point in the dynamically resized gesture quadrant that matches the gesture
definition. We then calculate joint angles needed to reach that target with the
IKAN inverse kinematics package [17]. Figure 4 shows a neutral key pose and
modified wrist locations for contracted as well as expanded spatial extent. We
note that this technique is conceptually similar to EMOTE’s kinematic reach
space. While inverse kinematics are computationally expensive, they provide the
only way of addressing arm movement in terms of goal positions. In a complex
articulated joint chain such as a human arm, controlling forward kinematics (i.e.,
joint angles) directly yields non-linear and unpredictable results. In our example
deictic gesture, increasing spatial extent will move the Y and Z goal coordinates
away from the agent, while the X coordinate remains unchanged because of the
:fixed constraint in the gesture definition.

Adjusting the elbow swivel angle (Tolani [17]) also directly changes the space
taken up by the agent – extended elbows enlarge the body’s silhouette. We can
control each arm’s IK swivel angle θ for every key position:



194 B. Hartmann, M. Mancini, and C. Pelachaud

Fig. 4. Spatial Extent - the center image shows a neutral key pose. Arms are contracted
for negative spc values (left) and extended for positive values (right).

θ′ = {min(θ · (1.0 + 0.5 · spc), π/2) spc ≥ 0
max(θ · (1.0 + 0.5 · spc), 0) spc < 0

Realistic default values for the swivel angle θ were established experimentally
in various point of the reach space. These modifications are performed at the
MotorPlanner stage.

Temporal Extent. Starting from the synchronicity constraint on the end of
the gesture stroke to coincide with the stressed affiliate in speech [2], we can
calculate preceding and proceeding frame times from invariant laws of human
arm movement described in [8]. During the planning phase, the actual distance
traveled by the wrist joint in space is approximated by linear segments through
key points. The duration to complete each segment can be derived from a sim-
plification of Fitt’s law as

T = a + b · log2(‖ �xn − �xn+1‖ + 1)

The value of the velocity coefficient b has been established as 10−1 for average
speed movements by Kopp [7]. Using this value as a starting point, the speed of
a gesture segment can be adjusted as follows:

b = (1 + 0.2 · tmp) · 10−1

Since we can match keyframes to gesture phases, we can selectively amplify the
stress of the gesture by increasing only the speed of the stroke to accentuate
the gesture. Figure 5 shows arm position over time for a beat gesture for three
different temporal extent parameter values.

Fluidity. This concept seeks to capture the smoothness of single gestures as
well as the continuity between movements (the inter-gestural rest phases). We
achieve low-level kinematic control through varying the continuity parameter of
Kochanek-Bartels splines [18] used in the Interpolator component. Once again,
this idea is close to EMOTE timing and fluidity control. In our implementation,
we set the continuity parameter cont of the position interpolation spline for the
wrist end-effector of each arm to equal the fluidity setting: cont = flt. The effect
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Fig. 5. Temporal Extent - plot of wrist position over time in one dimension. Keeping
the timing of a gesture’s stroke end fixed, the stroke start time is adjusted to control
the speed of the stroke.

Fig. 6. Fluidity - this plot of wrist position over time in one dimensions shows different
interpolation paths taken depending on the flt parameter

of this parameter on the shape of the interpolation spline is shown on the right
side of Figure 6.

Fluidity also acts on the GesturePlanner level: larger fluidity increases the
minimum timing threshold for retracting arms to a neutral position on the sides
of the torso in between two gestures. During below-threshold pauses, arms are not
retracted. Instead, two neighboring gestures are directly connected by interpo-
lating between the retraction position of a previous gesture and the preparation
position of the following gesture. In our example utterance, a low fluidity value
would cause the agents arms to be retracted between the gestures accompanying
the references to “you ” and “me ” (shown in transcript only, not in APML). A
high fluidity setting would smoothly interpolate in the pause between gestures
(as shown in the middle section of Figure 6).

Power. To visualize the amount of energy and tension invested into a move-
ment, we again look at the dynamic properties of gestures. Powerful movements
are expected to have higher acceleration and deceleration magnitudes. However,
tense movements should exhibit less overshoot. This behavior is modelled with
the tension and bias parameters of the position TCB-spline in the Interpolator :



196 B. Hartmann, M. Mancini, and C. Pelachaud

Fig. 7. Power - Wrist trajectory overshoot and hand shape are modified

bias = pwr and tension = pwr. The bias parameter controls overshoot, while
tension controls how sharply the spline bends at a keypoint. We also hypoth-
esize that tense, powerful performances will be characterized by different hand
shapes. If the configuration of the hand is not indicated as fixed in the gesture
specification, high power settings will contract the hand towards a fist shape
in the GesturePlanner stage. Figure 7 shows variation in wrist trajectories for
minimum and maximum power settings on the left side, and an adjusted hand
shape for a high power gesture on the right side.

Repetition. We have previously introduced the technique of stroke expan-
sion [6] to capture coarticulation/superposition of beats onto other gestures.
Stroke expansion repeats the meaning-carrying movement of a gesture so that
successive stroke ends fall onto the stressed parts of speech following the original
gesture affiliate. It is possible to control the extent of repetition by selectively in-
creasing the ‘horizon’ or lookahead distance that the stroke repetition algorithm
analyzes. In our example, the original speaker superimposed a beat onto the
post-stroke hold of the deictic gesture for you during the second occurrence of
the term. By increasing or decreasing the repetition parameter, we can encourage
or discourage such superposition, respectively.

5.4 Aggregating Parameters

We now describe how combining expressivity parameters can modify gesture
quality. Our system represents only a building block towards realizing affective
action – exactly how motion quality is changed by the emotional state of an ac-
tor is still an open question in experimental psychology. Wallbott [12] described
a partial mapping from emotional state to behavior quality, but much work re-
mains to be done. Until a more comprehensive mapping is established, we use
qualitative labels that are neutral with respect to emotion and personality, such
as “abrupt.” For abrupt action, “neutral” action is modified in the following
ways: Overall Activation and Spatial Extent were disregarded (and thus left to
the value 0) since abruptness is less apparent in the quantity of gestures or
the amount of space taken up by those gestures. These two parameters are not



Implementing Expressive Gesture Synthesis 197

important to convey abruptness. Temporal Extent was increased to 1 to speed
up the meaning carrying strokes of all gestures. Fluidity was decreased to -1 to
create jerky, discontinuous velocity profiles of arm movements and to discourage
coarticulation from one gesture to the next – the agent’s arms are frequently
retracted to a neutral position to create a disjoint performance. Power was set
to a high value (1) to force a fist hand shape for beats and rapid accelera-
tion and deceleration between gesture phases. Finally, Repetition was minimized
(-1) since the rhythmic quality of a repeating movement counteracts the notion
of abruptness. If we do not want to generate a strongly abrupt movement, we
can generate slightly abrupt behavior by interpolating the pertinent parameters
between “neutral” and “very abrupt” settings.

6 Evaluation

We conducted two evaluation tests. For the first test, we evaluated the following
hypothesis: The chosen implementation for mapping single dimensions of ex-
pressivity onto animation parameters can be recognized and correctly attributed
by users. 52 subjects were asked to identify a single dimension and direction of
change in forced-choice comparisons between pairs of animation videos. 41.3%
of participants were able to perceive changes in expressivity parameters and
attribute those changes to the correct parameters in our dimensional model
of expressivity. Recognition was best for the dimensions Spatial Extent (72.6%
of modifications correctly attributed to this parameter) and Temporal Extent
(73.8%). Modifications of Fluidity (33.9%) and Power (32.3%) were judged in-
correctly more often, but the correct classification still had the highest number
of responses. The parameter Repetition (28.0%) was frequently interpreted as
Power. Overall Activation, or quantity of movement, was not well recognized.
Overall, we take the results as indication that the mapping from dimensions
of expressivity to gesture animation parameters is appropriate for the Spatial
Extent and Temporal Extent dimensions while it needs refinement for the other
parameters.

The second test with 54 subjects was conducted as a preference ranking task
of four animations with different parameter combinations per trial to test the
following hypothesis: Combining parameters in such a way that they reflect a
given communicative intent will result in more believable overall impression of
the agent. In each trial, one clip corresponded to the neutral, generic animation,
two clips were variants of the chosen expressive intent (strongly and slightly ex-
pressive) and one clip had an inconsistent assignment of expressivity parameters.
The subjects were asked to order the video clips from the most appropriate to
the least appropriate with respect to the expressive intent. Participants in this
second test preferred the coherent performance for the abrupt action described
above over neutral and inconsistent actions as we had hoped. Similar results were
obtained for the vigorous action. However, results were more ambiguous for our
other test case - sluggish action. Two explanations are possible: the problem-
atic implementation of some of the parameters may have led to unrealistic or
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incoherent animation; alternatively, gesture modification alone may not be suf-
ficient - it may have to be integrated with gesture selection to achieve truly
believable expressive action. A person gesturing sluggishly might not use the
same gesture types as a vigorously gesturing one.

7 Conclusion and Future Work

We have presented a computational model to add movement quality to commu-
nicative gestures. Six dimensions have been considered. We have evaluated the
implementation of each of the six parameters individually and the ability of com-
municating a given intent with appropriate parameter combinations. We plan
to refine our computational model, especially for the parameters that had low
recognition rate. Control of dynamics is currently limited to modifying keyframe
timing and interpolation quality. Physics-based simulation could provide a more
suitable parametrization of movement, in exchange for higher computational
cost. The conceptual interdependence of some dimensions, particularly Power
and Temporal extent, also remains to be resolved. To ground further develop-
ment in actual human performance, we will continue to work with annotated
video corpora.
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Abstract. Simulating realistic human-like figures is still a challenging
task when dynamics is involved. For example, making a virtual human
jump to a given position requires to control the forces involved in take-off
in order to reach a given velocity vector at the beginning of the aerial
phase. Several problems are addressed in this paper in order to modify
a captured motion while accounting from dynamics. The method ex-
ploits a point mass approximation of the body for the Inverse Dynamics
stage during the contact phase and later to optimize new trajectories.
First, accurate body segment masses are required to have access to ex-
ternal forces thanks to inverse dynamics. Second, those forces have to
be adapted to make the resulting center of mass trajectory verify new
constraints (such as reaching a given point at a given time). This pa-
per also proposes a new formalism to encode force depending on time
in contact phases (called impulse). Whereas classical biomechanical ana-
lyzes focus only on the peak of forces and on the contact phase duration,
our formalism provides new data to characterize the shape of an impulse.

Keywords: take-off, optimization, dynamic control, constraints.

1 Introduction

Motion capture is widely used to guarantee realism in computer animation of
virtual humans. Nevertheless, several problems still occur, ranging from signal
processing to motion adaptation to new constraints. Given a set of external
markers’ trajectories, the main problem here is to propose a method to calculate
the gestures that verify constraints imposed in a virtual environment: adapting
the gestures according to the morphology, being at a given place at a given time,
reaching a target with one or several part of the body, ensuring foot contact on
the ground when the surface is not flat. . . The main applications deal with and
are not limited to multimedia, film production, entertainment, virtual reality,
training and education. Nevertheless, capturing a motion for each possible mor-
phology and spacetime constraint is impossible so that specific techniques are
required.

First approaches deal with minimizing a function that takes all the space-
time constraints into account [1][2][3]. Nevertheless, the required computation
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time is very long due to the large number of degrees of freedom that are consid-
ered (up to 60 degrees of freedom). Hence, improvements focused on decreasing
this complexity by using hierarchical approaches together with inverse kinemat-
ics [4][5]. An alternative consists in changing the representation used to code
posture in order to deal with adimensional data in the Cartesian frame. With
this proposal, the inverse problem is only summed-up to solving simple analyt-
ical inverse kinematics on body parts [6]. But, with all those techniques, only
kinematics is considered and could result in unrealistic gestures, especially for
highly dynamics motions (such as jumping, running fast. . . ).

Some improvements were recently proposed to overcome the hierarchical ap-
proaches limitations by constraining the zeromoment point in the feet-contact sur-
face [7]. This technique makes it possible to adapt the gesture in order to respect
balance. Another way to take balance into account is to control the position of the
center of mass by using inverse kinetics [8]. The control of the center of mass is as-
sociated with high priorities whereas other constraints are associated to lower ones
thanks to prioritized inverse kinematics [9][10]. Another advantage of such a tech-
nique is that it enables to make the center of mass follow a parabola in aerial mo-
tions. In order to go further this step in dynamically-sound motion adaptation [11]
proposed to perform dynamic simulation on a simplified model with only few de-
grees of freedomand then to recalculate the remaining joints by inverse kinematics.

An alternative to all those gesture adaptation techniques is to directly use
dynamical simulation on the complete skeleton [12]. In order to decrease the
complexity of such a method, Principal Component Analysis is performed [13]
and provides a restricted number of degrees of freedom to be controlled. The
controller calculates torques by optimizing a cost function taking spacetime con-
straints into account while making the result resemble to captured motions.
Scaling the gesture to a new character is also addressed [14]. Whatever the
improvements, the computation time is not yet compatible with real-time ani-
mation in interactive and changing environments.

[15] proposed a force-based method to drive captured motions. First, the cap-
tured motion is segmented into sequences of stances and aerial phases, assuming
that the center of mass is located at the root. Second, inverse dynamics pro-
vides forces at each time step. Third, an optimization process scales the first
harmonic of those forces in order to verify new constraints. Finally, the posture
is recalculated by optimizing the joints angles to make the center of mass follow
the corresponding trajectory. The main advantage of such a method is that it
separates the dynamics of the center of mass and the kinematics. This promising
technique could be improved in order to decrease the computation time and to
control more accurately the trajectory.

2 Overview

In this paper, we propose a new method to solve this problem (see figure 1). Given
a captured motion, we compute the accurate center of mass (denoted COM)
trajectory by first identifying the body segment masses of the original actor.
Then, the method exploits a point mass approximation of the body for the
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Fig. 1. Overview of the whole process developed in order to adapt the COM trajectory
to new constraints

Inverse Dynamics stage during the contact phase and later to optimize new
trajectories. Hence, inverse dynamics provides us with the external forces applied
to the COM at any time. In biomechanics, take-off is defined as the integral of
ground reaction forces during a contact phase. Take-off is widely studied in many
physical activities given that it completely characterizes the velocity variations
between the beginning and the end of take-off. Nevertheless, those biomechanical
studies focus on the vertical peak force values [16] and take-off duration while
this phenomenon is a continuous process over time. In our method, the shape
of the resulting forces F (t) is coded as multiresolution splines, as Liu et al.
did for angular trajectories [3]. Multiresolution splines provide low-level control
points, called keyforces (denoted K in the figure), and details. Thanks to this
formalism, only a few parameters (the control points) are adapted rapidly to
make the forces verify new constraints (such as jumping higher and taking the
new character mass into account). The details are only time warped in order to
follow the control points adaptations. As a consequence, we obtain new forces
F ′(t) and a new COM trajectory that best verifies the constraints.

3 Modeling External Forces

The simplest mechanical model describing an articulated system consists in fo-
cusing on its COM. In this system, the external forces mainly involve the weight,
the ground reaction force, contact forces and friction. The Newtonian laws en-
able to link the acceleration of the COM with those external forces at each time.
For a given period of time, those laws become:∫ L

0

(∑
Fextdt

)
=
∫ L

0

dp

dt
dt = pL − p0 (1)
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where Fext are the external forces, 0 and L stand for the lower and upper bound-
aries of the considered time interval, p is the product of the mass m and the
instantaneous velocity. As a consequence, this equation makes it possible to link
the external forces to the variation of velocity between time 0 and L:

vL = v0 +

∫ L

0 (
∑

Fextdt)
m

(2)

where v0 and vL are respectively the COM velocity at time 0 and L. To retrieve
the external forces applied during a captured motion, we have to process as
follows. First, the total body COM G must be recovered. Second, acceleration
of G is calculated for each frame. Then, Newtonian laws enable to calculate
external forces as the mass multiplied by the acceleration of G.

Captured trajectories of external markers can be used to retrieve the body
COM. To this end, joint centers should be retrieved in order to lower the skin
sliding artifacts. We applied the method proposed in [17] to calculate the joint
centers. According to joint centers, anthropometric tables [18] provide masses
mi, inertias Ii and local centers of mass location Gi for all the body segment.
Several authors in biomechanics demonstrated that motion analysis (including
external force evaluation) is very sensitive to the evaluation of such anthropomet-
ric data [19]. Hence, customization of such parameters is necessary to accurately
calculate forces from motion capture. Some works in biomechanics [20] proposed
to identify those parameters by minimizing the difference between forces cal-
culated indirectly with motion capture and measurements provided by a force-
plate. The motion is subdivided into two main phases: contact and aerial phase.
During aerial phase, only the weight is acting on the COM assuming that fric-
tion is neglected. Hence, the external forces are well-known and Vaughan et al.’s
approach [20] can be adapted:

f ({mi}) =
N∏

i=1

(
1

p(mi) + ε

)
×

T∑
t=1

(
G̈({mi}, t) − g

)2
(3)

where {mi} is the set of body segment masses for all the segments Si, G pro-
vides the global COM position according to time and a parameter set, g is
gravity, p(mi) is the probability for a mass to be realistic (uniform distribu-
tion around the values proposed in anthropometric tables), ε is a small value to
avoid division by 0, N is the number of body segments and T is the number
of frames during the aerial phase. f is the cost function that should be min-
imized in order to identify the body segment masses. In this equation N − 1
masses are directly optimized whereas the last one is equal to the total body
mass less the sum of the N − 1 other masses. This hypothesis enables to im-
plicitly verify that the sum of all the body segment masses is equal to the total
body mass. We performed specific experiments on 8 subjects to quantify the
improvements brought by using such an optimization. The results demonstrate
that the distance between the COM acceleration and gravity is decreased down to
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Fig. 2. Four examples of ground reaction forces in vertical jump (top-left), horizontal
jump (bottom-left), kick with a jump (top-right) and volley-ball smash (bottom-right)

0.1 m.s−2 (benefit ranging from 38% to 62%). As a result inverse dynamics
applied in the contact phase provides forces similar to those measured by a
force-plate (mean correlation equal to 0.95 and averaged root mean square error
equal to 2.5 N).

Figure 2 depicts the vertical component of the external forces computed for
several movements (vertical jump, high kicks, running, long jump) using this
technique. Each component of the external force is a continuous function of
time Fx(t), Fy(t) and Fz(t). Those functions can be modeled as multiresolution
splines, as suggested by [3]. The multiresolution splines provide the global shape
of the force together with additional details. The control points Φ0 used for the
global shape include the first and last value as well as all the points with null
derivative. The details Ψ0(t) are coded as a discretized signal corresponding to
the subtraction between the original signal and the one reconstructed with the
control points. This process could be applied recursively by decomposing the
details of level i into control points Φi+1 and the remaining details Ψi+1(t). In
this work, we applied this process only on the first level to obtain a minimum
set of parameters (only Φ0 called keyforces and denoted K in the remainder of
the paper, and Ψ0(t)).
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4 Optimization to Verify New Constraints

Contrary to motion adaptation techniques based on optimizing trajectories, we
propose to optimize forces to solve a problem on a given period of time. The
problem is to adapt a motion to new constraints:

– An initial velocity v0 that can be different from the one stored in the captured
motion, depending on the previous actions that were performed,

– A final velocity vL that is imposed by the user in order to produce a desired
aerial trajectory (such as jumping higher or to a larger distance),

– And a set of keyforces that provide us the shape of the external forces be-
tween the beginning and the end of the sequence.

In that case, the problem could be formulated mathematically by solving equa-
tion 2. To this end, we can tune the keyforces K in order to solve the following
problem:

m(vL − v0) = g(K) (4)

where g(K) =
∫ L

0 (
∑

Fext(K)dt), Fext(K) stands for the forces resulting from
the use of the keyforces set K. This problem is non-linear but could be linearized
locally, as it is currenlty performed in robotics to solve inverse kinematics prob-
lems [21]. Let v0

0 and v0
L be respectively the initial and final COM velocities for

the original motion (with keyforces K0). The problem can be linearized in the
neighborhood of K0, as follows:

m(vL − v0) − m(v0
L − v0

0) = J(K0)ΔK (5)

with ΔK = K − K0 and J(K0) is the Jacobian of function g in K0. Then, the
solution is provided by inverting this equation:

ΔK = J+(K0)
(
m(vL − v0) − m(v0

L − v0
0)
)

(6)

where J+ is the pseudo-inverse of J . ΔK with this expression has a minimum
norm. At this step, new constraints can be considered, such as:

– minimizing the sum of square forces to avoid high forces values:

h1 : min

(∫ L

0
F 2

ext(K0 + ΔK)dt

)
(7)

– and ensuring that the COM reaches the desired position at the end of the
contact phase:

h2 : min

((∫ t

0

(∫ t

0

1
m

Fext(τ)dτ + v0dτ

)
+ X0 − XL

)2)
(8)
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The solution of those constraints is searched in the null space of function g by
using the projection operator (I −J+J). As a consequence, the solution is given
by:

ΔK = J+(K0)
(
m(vL − v0) − m(v0

L − v0
0)
)

+ (I − J+(K0)J(K0))z (9)

where z is a function including constraints h1 and h2. As this computation is
performed at each stance phase, the first keyforce at stance s is equal to the
last keyforce at stance s − 1. If stance s is followed by an aerial phase, the last
keyforce is also known and is equal to gravity with null derivative. Moreover,
for all the intermediate keyforces the derivative is null due to our decomposition
algorithm. As a consequence, only the time and the value for each intermediate
keyforce has to be found in the system: from one to three control points in all
the motions we experimented, which represents only 2 to 6 parameters for each
axis. The Jacobian matrix that is computed numerically and the pseudo-inverse
can be then calculated rapidly.

Once the force is defined for each time step, the trajectory of the COM can be
computed. Let q0 be the position of the COM at the beginning of the sequence.
Giving q0 and v0, the velocity for each time step can be computed thanks to
a two-times integration. Giving the COM trajectory and an initial motion, it
could be possible to calculate new gestures by using inverse kinetics for each
time step [9].

5 Results

In this section, we present the results obtained by optimizing the body segment
masses and by modifying a COM trajectory in order to verify new initial and final
velocities. First, let us consider the masses calculated by optimization according
to external markers during the aerial phase. We performed our calculations on
five subjects that jumped 10 times while equipped with 28 reflective markers.
The markers’ positions were stored by a Vicon370 motion capture system (Ox-
ford Metrics) composed of 7 cameras cadenced at 60Hz. The subjects were asked
to perform large and complex gestures during the aerial phase in order to evalu-
ate our optimization method. We calculated the root mean square error between
the COM acceleration (calculated with the optimized masses) and gravity. We
also calculated this error without any optimization (with De Leva’s anthropo-
metric tables [18]) to evaluate the improvements provided by our method. The
calculation of the COM acceleration during the aerial phase was improved with
a factor ranging from 37% to 62%.

Second, we tried to estimate the quality of the optimization process used
to modify the take-off. To this end, we selected a force curve obtained with a
subject performing a vertical jump. Let K0 be the keyforces identified in this
force curve. Then, we selected another take-off (called goal-motion) performed by
the same subject, with a different initial and final COM position and velocity.
We optimized K0 in order to verify the constraints of this goal-motion. The
results are depicted in figure 3. In this figure, the original COM acceleration
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is depicted with stars, the goal-motion is depicted with crosses and the result
with ’o’. One can see that the COM acceleration of the goal-motion exhibits two
maximum peaks in the final phase whereas the original one only exhibits one
peak. Those two peaks in the goal-motion are linked to a time shift between the
actions of the two legs. Nevertheless, with our method, it is impossible to make
the optimized original take-off have two peaks given that only one keyforce is
available in this neighborhood. As a consequence, in order to obtain the same
integral as the goal-motion does, the system found a solution that involves a
longer duration and a higher peak value.

Figure 4 describes the COM velocities for the original take-off, the goal-motion
and the result provided by our method. One can see that the final velocity for
the result is similar to the one observed for the goal-motion. Moreover, the shape
of the result is similar to the one of the goal-motion, with a similar minimum
value. As observed above, only the duration of the take-off is different.

As for velocities, the COM position for the result is similar to the one observed
in the goal-motion (see figure 5).

As the differences between the two take-offs were low, we experimented our
method with artificial goal-motions that involved higher differences. For example,
we created artificially a goal-motion by multiplying the original take-off integral
with a factor of 1.5 while preserving the original and final COM position. The
COM velocity at the end of take-off was also multiplied by 1.5. Figure 5 provides
the results obtained with such constraints. Intrinsically, our method preserves
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Fig. 6. Center of gravity acceleration in the original (x) and the optimized one (o) in
order to multiply the final velocity by 1.5

the initial shape of the COM acceleration while adapting the total integral in
order to reach a new velocity and position.

6 Discussion

In this paper, we addressed two main problems: automatic identification of body
segment masses that enables to have access more accurately to forces than using
anthropometric tables, and rapid adaptation of the external forces in order to
verify new constraints. The main originality of this work is to model external
forces acting on the COM as a set of keyforces (using a multiresolution spline de-
composition). This choice enables to decrease the complexity of the optimization
process. In Matlab (product of Mathworks), this process only requires around
0.4s on a Pentium 4 3GHz processor for a 1s take-off. This computation time
could be significantly decreased if the algorithm would be coded in C++. Future
works will embed this method in an interactive animation engine in order to
evaluate if it verifies real-time requirements.

Contrary to previous works [15], we do not optimize all the joint forces and
torques to control the body segment movements because it requires too much
computation time, including the use of a mechanical solver. Moreover, in this
previous work, the parameters that were optimized were only the first harmonic
of the external forces. In figure 2, one can see that those forces contain more than
one main harmonic. Consequently, optimizing only the first harmonic should lead
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to large approximations that might be unacceptable in some take-offs. In our
method, we also use a simplified representation of those forces but splines seem
more adapted to such non-periodic and complex signals. Moreover, although
primary control points are optimized, the signal is completely reconstructed to
evaluate the cost function to guarantee correctness.

Nevertheless, this technique has some limitations. The main limitation stems
from instability if the beginning and the end of take-off are not accurately re-
trieved. Indeed, if we consider some samples after toe-off in the optimization
process, the double integral of forces would not correspond to the actual COM
position. The same way, if inaccurate initial position and velocity are used, the
double integration would also engender unrealistic final position and velocity. To
overcome partially those limitations, it would be necessary to accurately subdi-
vide the motion into a contact and a flying phase. This automatic segmentation
is not easy given that the COM acceleration rapidly falls to gravity at the end
of take-off. An alternative should be to work with the COM position instead
of the external forces. Thus, the initial value problem would disappear given
that no double integration would be used. Moreover, it should be easier to con-
trol the shape of the trajectory (instead of forces) while imposing initial and
final position and velocity. Nevertheless, it should also be necessary to take the
shape of external forces into account in order to preserve dynamics involved in
the original motion. The method proposed in this paper still has the advantage
of directly controlling the forces and should naturally take new dynamic con-
straints into account (such as taking wind, changes in gravity, changes in mass
repartition. . . into account), contrary to approaches only based on kinematics.

Several methods were proposed in biomechanics, computer animation and
robotics to model vertical jumps. However, there are many different ways to
perform a jump, according to styles and performance (in long jump compared to
smash in volley-ball for example). Modelling all the possible styles is quite im-
possible. However, searching how to adapt a captured motion to new constraints
is supposed to preserve the original style and looks more promising, as sug-
gested for example [15]. The applications are numerous, ranging from computer
animation to sports motion and performance understanding.
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Abstract. The purpose of this study is to propose a new tool to define the 
posture of a complete upper-limb model during grasping taking into account 
task and environment constraints. The developed model is based on a neural 
network architecture mixing both supervised and reinforcement learning. The 
task constraints are materialized by target points to be reached by the fingertips 
on the surface of the object to be grasped while environment constraints are 
represented by obstacles. Without few prior information on the adequate 
posture, the model is able to find a suitable solution. Simulation results are 
proposed and commented. This tool can find interesting applications in the 
frame of gesture definition and simulation. 

1   Introduction 

Defining a suitable upper-limb configuration to perform a manual gesture (e.g. 
grasping) is a challenging problem especially in an environment with obstacles. 
Indeed, the completion of this task implies the consideration of a large number of 
constraints related not only to the structure of the limb and the characteristics of the 
object but also to the requirements of the task and the state of the environment. In this 
frame, a new architecture based on neural networks is proposed to define the 
kinematic configuration of a 27 degrees of freedom upper-limb model from the 
knowledge of the position of the object to be grasped, the contact set and the bounds 
of the 7D arm configuration space. No information about the obstacles is available to 
the learning agent. Unlike previous developed tools [1 - 4], the proposed method can 
take into account both task and environment constraints in a straightforward way. 
Also, it is build upon a previous work [5, 6] where only the hand was taken into 
account with no obstacles in the environment. The consideration of the whole upper-
limb including the lower and the upper-arm as well as the presence of obstacles in the 
environment are new functionalities that enhance the original model performances. 

2   Problem Definition and Hypotheses 

The definition of the problem is : Given an object located in an environment with 
obstacles, define all the kinematic parameters of an upper-limb model (including arm 
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and hand) in such a way that the fingertips can reach a defined position on the 
surface of the object with no collision between any part of the upper-limb and the 
environment. In the remainder of this article, the term posture refers to the set of joint 
angles that describes the upper-limb model configuration. This includes the arm (7 
degrees of freedom) as well as the hand and the fingers (4 degrees of freedom per 
finger). The number of contacts is between two and five. To define the upper-limb 
posture, the following assumptions are made : 

1. Only precision grasps are considered, therefore there is only one contact per finger, 
2. We assume that the contact set between the fingers and the object is already 

defined and satisfies force closure (i.e. the forces applied by the fingers can ensure 
the object immobility and equilibrium under frictional constraints), 

3. To each contact on the object corresponds a particular finger. 

The input data of the model are: 

1. The upper limb geometry, 
2. The number of contacts, 
3. The finger associated to each contact, 
4. The object location and orientation, 
5. The location of the contacts in the object reference frame, 
6. The bounds of a seven dimensional search space corresponding to the set of 

possible arm configurations. 

The outputs of the model are: 

1. The configuration of the arm in joint coordinate space, 
2. The location and orientation of the hand reference frame relative to the world 

frame, 
3. The configuration of the fingers in joint coordinate space. 

No assumption is made about the number, shape, position and orientation of the 
obstacles. 

2.1   Hand Model 

The hand model is composed of five articulated rigid chains representing the fingers. 
They are connected to a common body representing the palm (Fig. 1). Each finger has 
three links connected by three joints with a total of four degrees of freedom. The first 
joint of each finger has two degrees of freedom that allow to simulate the flexion-
extension and abduction-adduction movements. The two other joints have one degree 
of freedom representing joint flexion. The complete model has 20 degrees of freedom. 
The hand geometry is set according to studies on hand anthropometry carried out by 
Garret [7] and Buchholz and al. [8]. 

2.2   Arm Model  

The model of the arm is composed of two segments and three joints (Fig. 1). The first 
joint, located at the shoulder (gleno-humeral joint) has three degrees of freedom (ball 



214 N. Rezzoug and P. Gorce 

and socket joint with 3 rotations of an amount q1, q2 and q3). The second joint is 
located at the elbow and has one degree of freedom (flexion of an amount q4). Finally, 
the last joint, located at the wrist, has three degrees of freedom (rotation of an amount 
q5, q6 and q7). The final frame of the last segment defines the orientation of the hand 
palm. We consider that the joint responsible for wrist axial rotation is located at the 
wrist. According to this formulation, the arm posture is completely defined by the 
joint angles vector q = [q1 , q2, q3, q4, q5, q6, q7]

T. It can be noted that the arm has one 
redundant degree of freedom. 

 

Fig. 1. Upper-limb model 

3   Model Presentation 

Defining the upper-limb kinematic parameters is a complex task because of the large 
number of degrees of freedom and constraints to be satisfied. It can be considered as 
an inverse kinematics problem of a redundant multichain mechanism with multiple 
objectives characterized by a possibly infinite number of solutions. To solve this 
problem, we start from the idea that if the hand palm configuration is held fixed it is 
possible to compute the configuration of the fingers in joint coordinate space by 
using inverse kinematics. Furthermore, if the desired fingertip position is expressed 
relative to the finger root frame and if a model of finger inverse kinematics is 
constructed by learning, it is possible to compute quickly the fingers joint angles 
given any hand palm configuration. In this way, the number of parameters to define 
decreases from up to 27 to 7 which correspond to the arm joints configuration. This 
latter remains to be computed. The chosen mechanism uses reinforcement learning to 
optimize the arm configuration such that the fingertips can reach the contact on the 
surface of the object. In order to induce a collision avoidance behavior specific 
reinforcement signals are proposed and evaluated. In particular, a simple but 
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efficient mechanism based on the concept of shaping improves the learning 
performances. The process of upper-limb grasping posture definition has two parts: 
the arm joints configuration is generated by a first network (called “Arm 
Configuration Neural Network” or ACNN) and the corresponding finger joints are 
obtained by inverse kinematics with a second neural network model called “Finger 
Configuration Neural Network” or FCNN. Then the whole posture is evaluated and 
from the corresponding evaluation the ACNN is trained by reinforcement learning in 
order to increase the performance over time. 

The model is composed of two neural modules working in closed loop (Fig. 2). 
The first module (ACNN) is aimed at determining the appropriate arm joints 
configuration. It is a multilayer feedforward neural network with a learning process 
based on the paradigm of reinforcement learning. This type of learning is achieved 
with resorting to a particular type of processing units called Stochastic Real Valued 
(SRV) neurons [9]. The FCNN, the second module, is devoted to the definition of 
the fingers configuration in joint coordinate space from the desired fingertips 
position [5, 6, 10]. Its output data are used to evaluate the arm configuration and 
compute a reinforcement signal taking values over the interval [0, 1]. This evaluation 
of the current upper limb configuration is used by the first network (ACNN) to 
update its internal parameters. The principle of the developed method is now 
described: 
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1. The current arm configuration and the difference between the actual and previous 
arm configurations (equivalent to a speed with unit time) are input to the ACNN. 
As output, a new arm configuration within the defined search space bounds is 
obtained. 

2. From the arm configuration, the hand palm frame configuration (position and 
orientation) is computed by using the arm forward kinematics. 

3. Thanks to this new hand palm configuration, it is possible to express the position 
of the contacts in the frame of  each corresponding finger (on the surface of the 
object, a particular contact is affected to each finger), 

4. Using the inverse kinematics scheme (FCNN), the joint configuration of the fingers 
is computed.  

5. The complete upper-limb configuration (arm joints angles, hand palm configuration 
and fingers joint angles) is tested with a criterion. From this latter, a reinforcement 
signal is computed and is used to update the ACNN internal parameters. 

This procedure is repeated until a good solution is found (i.e. the reinforcement 
reaches a sufficiently high value and the criterion is optimized) or until the maximum 
number of iterations is reached. More details about the FCNN and ACNN can be 
found in [5, 6]. In these references, only the hand is considered. Therefore we use the 
term HCNN (Hand Configuration Neural Network) instead of ACNN.  

4   Improving Learning Performances by Shaping 

In order to define a suitable reinforcement signal, two aspects of the performance 
have to be taken into account. The first one evaluates the upper-limb positioning task 
while the second is relative to collision avoidance. In the following, the different steps 
that conduct to the definition of the appropriate reinforcement signal are described. 
Firstly, the positioning task is evaluated. To do this, given the arm and fingers 
configurations, the actual position of the fingertips is calculated using forward 
kinematics. 

Let ( )PX i
D

i
D

i
D

i
D T

x y z= , ,  (1) 

be the vector of the desired fingertip position written relative to the base coordinate 
frame of finger i at step k and  

( )PX i
M

i
M

i
M

i
M T

x y z= , ,  (2) 

the vector of the actual fingertip position written relative to the base coordinate frame 
of finger i. If n fingers are involved, the total error at step k is:  

Ek i
D

i
M

i

n

= −
=

PX PX
1

 (3) 

with . designing the Euclidean L2 norm. 
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The simplest form of the reinforcement R1 as used in [5, 6] gives a maximum 
penalty if error Ek is large and is given in (4): 

( )1 1 . khR a E= − . (4) 

where a is a positive real number. 
The function h is chosen in such a way that R1 is a decreasing function of the 

error Ek and takes values over the interval [0, 1]. If Ek is large, h tends toward 1 and 
therefore the network receives a maximum punishment with a reinforcement R1 
toward 0. On the other hand, if the error Ek is low, h tends toward 0 and consequently 
the system receives a reinforcement toward 1. In the present case, h is the tangent 
sigmoid function. 

Starting from the definition of R1, the basic expression of the reinforcement signal 
that incorporates collision avoidance behavior is given by: 

1
2

1

if no collision

if collision

 
     

/ 2  

R
R

R
=  (5) 

In order to fulfill the secondary task i.e. collision avoidance, the reinforcement R1 is 
divided by two whenever a collision is detected. Therefore, even if the principal task 
is accomplished with success the reinforcement is low due to the occurrence of a 
collision. One can notice the simplicity of the incorporation of collision avoidance 
behavior in the learning process. However, the criterion R2 uses a somewhat crude 
strategy and the results may not be as satisfying as expected. Indeed, the learning 
agent has to directly discover the right strategy to satisfy two kinds of constraints at 
the same time. This is a more complex task than arm positioning only.  

In order to circumvent this difficulty, we propose to use a technique inspired from 
animal training called shaping [11]. Gullapalli [12] gave a nice definition of this 
concept and applied it to the frame of reinforcement learning : “The principle 
underlying shaping is that learning to solve complex problems can be facilitated by 
first learning to solve simpler problems. … the behavior of a controller can be 
shaped over time by gradually increasing the complexity of the task as the controller 
learns”. 

To incorporate shaping in the learning procedure, the basic idea is to let the agent 
learn the positioning task first and the collision avoidance behavior during a second 
phase. To implement this, a reinforcement signal that gradually increases over time 
the penalty due to collisions is defined. In this way, the agent can learn adequately the 
first task and modify its behavior in order to achieve the second one. The 
reinforcement value used in this case is the following: 

( )
1

3
1

if no collision

if collision
     

/ 1 /

R
R

R i p
=

+
 (6) 

where i is the current iteration number and p the maximum number of iterations. 



218 N. Rezzoug and P. Gorce 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration number

R
ei

nf
or

ce
m

en
t

R3, C > 0 

R4, C = 2 

R4, C = 3 

R4, C = 4 

R4, C = 5 
R4, C = 6 

R1 = 0.99 

R2 = 0.495, C > 0 

 

Fig. 3. Evolution of the reinforcements R1, R2, R3 and R4 relative to the iteration and collision 
numbers 

If collisions occur, for the same value of R1, an increase of i conducts to an 
increase of the denominator in (6) and consequently to a decrease of R3. If i = p, we 
can notice that R3 = R2 and that there is a gradual shift from R1 (no penalty for 
collision) to R2 (full penalty for collision). This weaker definition of arm positioning 
with collision avoidance may be easier to learn than direct collision avoidance as 
defined by R2. The evolution of R3 with R1 = 0.99 when collisions occur is displayed 
in Fig. 3.  

The main drawback of R3 is that the same penalty is applied whatever the number 
of collisions. It may be easier to learn the task successfully if the learning agent can 
grade differently two situations with different numbers of collision, giving more 
penalty to the posture conducting to more collisions or interpenetrations. In order to 
solve this problem, we define the reinforcement R4:  

( )( )
1

4
1

if no collision

if collision
     

/ 1 /

R
R

R c i pβ=
+

 (7) 

where c is the number of detected collision(s) or interpenetration(s) and β a positive 
real number. 

Reinforcements R3 and R4 use the same strategy, except that R4 takes into account 
the number of collisions. Indeed, for the same value of R1, i and p, an increase of c 
conducts to an increase of the denominator in (7) and therefore to a decrease of the 
reinforcement R4. If c = 1, we notice that R4 = R3. The evolution of R4, with different 
values of c is displayed in Fig. 3. 
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5   Simulation Results 

The task to be performed is to grasp a cylinder with three fingers. Two different 
environments are considered, the first one with a big obstacle between the arm and 
the object and the second one with two obstacles (Fig. 4.). 30 simulations are 
performed for each reinforcement and for each environment. The weights of the 
ACNN are initialized with random values over the interval [-0.5, 0.5] and a random 
arm configuration is chosen within the search space. The learning has to be 
completed for each task and environment and is performed until a reinforcement 
greater than 0.99 is obtained or until the maximum number of iterations is reached. 
A FCNN is constructed off line for each finger before the simulations [5, 6]. 
Collision or interpenetration check is implemented with a two steps scheme. Axis 
aligned bounding boxes are constructed for each element of the environment to 
make a first check. If it is positive, the distance between any pairs of solids that are 
likely to collide is computed. This is done by minimizing the distance between any 
pair of points on the surface of two elements of the scene modelled with 
superquadrics.  

 

Fig. 4. Environments for the two grasping tasks 

In table 1, we display the obtained results. In the first row, the number of successes 
is indicated for each reinforcement. This corresponds to the case where the 
reinforcement is greater than 0.99. In the second and third rows is indicated the 
number of cases for which a failure is due either to the positioning task or to 
collisions. Finally, for the successful cases, the last two rows indicate the mean and 
standard deviation of the required number of iterations to obtain a suitable 
reinforcement.  

Reinforcement R1 is used as a reference in order to demonstrate that the other 
reinforcements R2, R3 and R4 have effectively an effect on collision avoidance. 

The first observation is that the incorporation of collision avoidance behaviour in 
the reinforcement signal effectively leads to collision avoidance even if the 
positioning task is not achieved. Using R1, we obtain 22 solutions out of 26 valid ones 
with collisions between the upper limb and the environment for the first task and 24 
out  of  25  for the second task. This number falls to 3, 7 and 4 for R2, R3 and R4 for the  
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Table 1. Simulation results for task 1 

Reinforcement R1 R2 R3 R4 
Success 26 20 22 26 

Positioning 
task  

4 10 7 4 Causes 
of failure  

Collision 22 3 6 2 
Mean iterations number  102 430 281 310 

Standard deviation 126 271 259 245 

Table 2. Simulation results for task 2 

Reinforcement R1 R2 R3 R4 
Success 25 8 22 16 

Positioning 
task  

5 22 7 14 Causes 
of failure  

Collision 24 4 2 5 
Mean iterations number  120 454 273 260 

Standard deviation 161 266 228 223 

first task and 4, 2 and 5 for the second task respectively. Also, we notice that there is  
an  increase of the number of successes when shaping is used compared to the case 
where a crude collision avoidance reinforcement is used (R2). This is particularly 
obvious for the second task (8 successes with R2 compared to 22 using R3). This 
suggests that the strategy of shaping allows to find a solution more often and therefore 
that it facilitates the learning. To determine if the use of the different reinforcements 
has an effect on the number of iterations (NOI), a one way analysis of variance 
(ANOVA) [13, 14] on the number of iterations to complete the task is conducted. A 
Bonferoni post-hoc test is used to perform multiple comparisons between means. The 
ANOVA evidences a significant difference between four groups means (p<0.0001). 
Also, the post-hoc tests show a significant increase of the NOI using R2 compared to the 
NOI using R3 and R4 (p<0.05). Also, a significant increase of the NOI using R2, R3 and 
R4 compared to the NOI using R1 is noticed (p<0.05). There is no significant difference 
between the NOI using R3 and R4. These results suggest that learning the positioning task 
is easier than the positioning task with collision avoidance because, on average, more 
iterations are needed whatever the chosen reinforcement. Secondly, the incorporation of 
shaping in the learning process reduces significantly the required number of iterations to 
reach the goal. Finally, taking into account the number of collisions in the reinforcement 
definition does not seem to improve significantly the learning performances. Therefore, 
among all the reinforcement signals proposed in this study, we can consider that R3 is the 
best one to perform grasping posture definition with obstacles in the frame of the 
considered model. 

In Fig. 5 examples of postures obtained with R3 for the two tasks are displayed.  
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Fig. 5. Postures obtained with R3 for the two tasks 

Also, in Fig. 6, the posture obtained to grasp a cylinder surrounded by 3 obstacles 
is shown. 

 

Fig. 6. Upper-limb posture obtained by the model to grasp a cylinder surrounded by three 
obstacles 
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6   Conclusion 

In this paper, we have proposed a new model to define the kinematics of an upper 
limb model during grasping. The proposed method is based on two neural networks. 
The first one is dedicated to finger inverse kinematics. It is based on an architecture 
composed of several networks. The second stage of the model uses reinforcement 
learning to define the appropriate arm configuration. The corresponding neural 
network is composed of backpropagation units associated with stochastic real valued 
(SRV) neurons in the output layer. This model is able to define the whole upper limb 
configuration to grasp an object while avoiding obstacles located in the environment. 
Several simulation results demonstrate the capability of the model. The fact that no 
candidate solution is required to start the upper-limb posture construction is an 
interesting property of this method. Another valuable feature is that a solution can be 
obtained after a relatively low number of iterations and that no information about the 
number, position, shape and size of the obstacles is provided to the learning agent. We 
can consider this method as a part of a larger model to define arm postures that 
tackles the "kinematic part" of the problem and can be associated with any grasp 
synthesis algorithm. In future work, we plan to develop algorithms based on 
unsupervised learning and Hopfield networks to construct the upper-limb movement. 
In this way, we will be able to generate an upper-limb collision free trajectory in joint 
coordinate space from any initial position to the collision free final configuration 
obtained by the method described in this article.  
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Abstract. This paper addresses the problem of synthesizing in real time the mo-
tion of realistic virtual characters with a physics-based model from the analysis of 
human motion data. The synthesis is achieved by computing the motion equations 
of a dynamical model controlled by a sensory motor feedback loop with a non-
parametric learning approach. The analysis is directly applied on end-effector tra-
jectories captured from human motion. We have developed a Dynamic Program-
ming Piecewise Linear Approximation model (DPPLA) that generates the discre-
tization of these 3D Cartesian trajectories. The DPPLA algorithm leads to the 
identification of discrete target-patterns that constitute an adaptive sampling of the 
initial end-point trajectory. These sequences of samples non uniformly distributed 
along the trajectory are used as input of our sensory motor system. The synthesis 
of motion is illustrated on a dynamical model of a hand-arm system, each arm be-
ing represented by seven degrees of freedom. We show that the algorithm works 
on multi-dimensional variables and reduces the information flow at the command 
level with a good compression rate, thus providing a technique for motion data in-
dexing and retrieval. Furthermore, the adaptive sampling seems to be correlated 
with some invariant law of human motion. 

1   Introduction 

When simulating and animating virtual characters, biologically-inspired models play a 
major role, as the produced movements exhibit properties inherent to human move-
ments. As emphasized by psychologists and physiologists, human beings are more sen-
sitive to movement of biological origin [1]. There are two ways to reach a certain degree 
of naturalness for the synthesis of gestures. First, the articulated system can be modeled 
by a physical model responding to physical laws of movement. The difficulty here is not 
so much to simulate the motion equations, but to determine the appropriate controller 
that drives the system towards a desired goal expressed in the task-command space. 
Second, the animation can be directly done by motion capture data. The difficulty with 
this last method is to determine new motion on the basis of previously registered ele-
mentary motions, and to ensure smooth transitions between these elementary motions.  

In our approach, we try to establish a link between real-time synthesis models and 
motion analysis models using motion capture data. The synthesis model is based on a 
dynamical Sensory Motor Model (SMM) and is driven by a task-based analysis model 
that extracts discrete target-based patterns on the basis of motion capture data.  
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After presenting the global analysis synthesis method, this paper is focused on the 
presentation of the analysis model. More precisely we describe a Dynamic Program-
ming Piecewise Linear Approximation (DPPLA) algorithm whose outputs can be 
used to control the articulated system. Since the command is directly extracted from 
real human data, the animation system produces movement with biological relevance. 
The analysis-synthesis model is applied to the simulation of anthropomorphic hand-
arm movements. The performance of the method is presented according to invariant 
laws of movement.  

2   Analysis-Synthesis Methods 

Several problems arise when simulating human hand-arm motion. First, the biome-
chanical system composed of a set of interacting articulated structures has to be has to 
be modeled. This biomechanical model is directly dependent on the way the muscu-
lar-skeleton apparatus is modeled. Most of the time simplifications of the mechanical 
structure have to be considered. Controlling such a complex system necessitates the 
design of appropriate controllers associated to the different articulated chains. In our 
approach, the control of the biomechanical system is materialized by a Sensory Motor 
Model (SMM) that continuously uses sensory data to update the state variables of the 
dynamical system to control. The feedback mechanism carries out an inversion proc-
ess, i.e. it automatically computes the input of the biomechanical system from the 
observable outputs and the command input. The SMM is illustrated in Figure 1, as the 
motion synthesis block.  

 
 
 
 
 
 
 
 
 
 

Fig. 1. Analysis/synthesis model for gesture modeling and animation 

This paper deals with the problem of modeling the command of such a sensory mo-
tor model, as a motion analysis approach. This analysis process can be seen as an 
inversion process: from motion capture signals, a discrete command pattern is ex-
tracted through a discretization process; the command input can be used to control the 
SMM, as illustrated in Figure 1. 

2.1   Motion Analysis 

Exploiting analysis data to run the synthesis model raises the question of identifying 
the appropriate variables at the command level. Some psychologists and physiologists 
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assume that - at least for some classes of movements - spatial representation is more 
invariant than force-time patterns or joint rotations. Following this idea, we make the 
hypothesis that end-effectors motion traces expressed in the 3D Cartesian space can 
be used to control the muscular-skeleton system. We expect that this spatial represen-
tation is closer to the task than other internal sensory or motor variables, as force or 
moment variables [2-3]. 

More precisely, this paper will cover the modeling of the end-effectors trajectories  
in terms of discrete target patterns. Given a desired trajectory, we extract sequences  
of targets that represent in an optimal way the original trajectory. This approach differs 
from the methods widely used for the purpose of segmenting human motion capture 
data into high-level behaviors or low-level components. These last methods are  
designed most of the time to reduce dimensionality by identifying low-dimensional 
clusters in high-dimensional data [4]. Another method is proposed for non-uniform sub-
sampling of motion captured data. This method uses polygonal approximation to  
provide a compressed representation of dance gesture trajectories [5]. The objectives of 
this approach are different from ours, since the compressed data in [5] are used as input 
of a recognition system, whereas we use our reduced trajectories for synthesis purpose. 

Our target-based discretization method, also called adaptive sampling could be useful 
for motion segmentation, but above all we aim to extract discrete patterns as input of our 
motion generation models. The main interest of the adaptive sampling is to facilitate the 
manipulation (edition, recombination) of elementary movements, the composition op-
erators being implemented as the concatenation and smoothing of target sequences. 
Furthermore this discretization process leads to the reduction of the data flow at the 
command level and to the reduction of the representation space in which movements are 
embedded. This is also of great importance for dealing with information retrieval in 
movement data base. Finally this sampling process is a first step towards the parame-
terization of motion. Rather than using straightforward key-points extracted from mo-
tion invariant laws [6], we propose an automatic segmentation process operating on 
multi-channel variables which yields a discrete representation of motion.  

2.2   Motion Synthesis 

Numerous solutions exist to control sensory motor systems. Some methods consider 
the control problem as finding numerical solutions to inverse kinematics or inverse 
dynamics, depending on the representation of the movement system. Among these 
solutions, we have developed analytical methods extended by learning methods, ap-
plied both for kinematics or dynamics control. 

The synthesis model attached to each articulated chain is represented by a sensory 
motor system which yields a means of coupling the continuous internal signals in the 
sensory motor process with desired commands expressed as continuous trajectories 
in the Cartesian space or as sequences of discrete targets in the task space. It has 
already been developed for controlling various articulated systems with different 
control policies: The GSM model uses a gradient-based algorithm in a sensory motor 
closed-loop transformation which integrates neurophysiological elements [7]. This 
model has proved to control articulated chains and produce motion that globally 
respects human motion laws. It has been used in a modular architecture to generate 
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expressive communicative and Sign Language Gestures [8-9] or coordinated jug-
gling motion [10].  

Another control policy uses a learning approach within a sensory motor loop (ASM 
model) [11-12]. In this case, the learning algorithm is based on a local inversion prin-
ciple and uses local neighborhood research techniques to compute the new predicted 
state variation to be generated. The training data set can be incrementally updated in 
time to adapt to changes of the performance tasks and to structural changes of the 
physical system.  

A sensory motor dynamical system is considered in this paper, which includes  
two inversion processes: the first one is a kinematics inversion, based on the same 
learning control policy; the second one is a dynamics inversion, achieved by a  
Proportional Integrative Derivative model. 

For each sensory motor model, various tasks can be defined, such as reaching or 
tracking tasks. In our synthesis models, the task is expressed as desired goals in the 
spatial 3D space or in the joint angular space. For simple or multiple reaching tasks, 
these goals can be represented as sequences of targets to reach, with or without  
co-articulation. For tracking tasks, the goals can be expressed as desired end-point 
continuous or discrete trajectories.  

We propose to define the input command from the analysis of motion capture data. 
Coupling synthesis with data extracted from human motion is necessary if we want to 
integrate some invariant features of movements. The discretization method, called Dy-
namic Programming Piecewise Linear Approximation (DPPLA), achieves the analysis 
process necessary for the synthesis process, which was missing in our former systems. 

3   Dynamic Programming Piecewise Linear Approximation Model 
(DPPLA)  

The DPPLA algorithm makes the discretization of end-effector trajectories possible in 
O(n2/k) where k is the number of samples. These trajectories can be considered as a 
multivariate continuous 3D process X(t) =[x(t), y(t), z(t)].  A more general view is to 
consider X(t) as a spatio-temporal trajectory of time-stamped spatial vectors in p di-
mensions. In practice, we will deal with the sampled trajectory X(n) where n is the 
time-stamp index.  

We propose a data modeling approach to handle the adaptive sampling of the end-
effector trajectories. More precisely, we are seeking an approximation θ̂X  of X(n) such as: 

( )),(ˆ
θ

θ
θ XXEArgMin=  

where E is the RMS error between X and the model θX . 

As a first attempt, we have selected the family { )(nXθ } as the set of piecewise 

linear functions. Numerous methods have been proposed to the problem of approxi-
mating multidimensional curves using piecewise linear simplification and dynamic 
programming in O(kn2) complexity [13]. Some efficient algorithms [14] (in 
O(nlog(n)) complexity) [15] have been proposed for planar curves, but none for the 
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general case in Rd. We constraint the search of the segments by imposing that the 
extremities of the piecewise linear segments are on the trajectory X(t). Thus, θ is the 
set of discrete time location {ni} of the segments’ endpoints. Since the end of a seg-
ment is the beginning of the following one, two successive segments share a common 

ni at their interface. The selection of the optimal set of parameters { }in̂ˆ =θ  is per-

formed using a dynamic programming algorithm [16] as follows.  
We first define the compression rate of the piecewise approximation as: 
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where A stands for cardinal of set A and nnX p ∀ℜ∈ ,)(  

Given a value for ρ and the size of the trajectory window to sample 
w= { } { }wnnX ,..,1)( ∈

, the number N= { }in -1 of piecewise linear segments is known.  

Let us define θ(k) as the parameters of a piece wise approximation containing k 
segments, and δ(k,i) as the minimal error between the best piecewise linear approxi-
mation containing k segments and covering the discrete time window {1,..,i}: 
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According to the Bellman optimality principle, δ(k,i) can be decomposed as follows: 
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segment between X(i) and X(nk). 
The initialization of the recursion is obtained observing that: 
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The end of the recursion gives the optimal piecewise linear approximation, e.g. the 
set of discrete time locations of the extremity of the linear segments: 

−=
=

w

n
k

k
nXXArgMink

1

2

)(
)(

)()(ˆ θ
θ

θ  

with the minimal error : 

=

−=
w

n
k

nXnXwk
1

2

)(ˆ )()(),( θδ  

The complexity of the proposed algorithm is in O(k.w2). To reduce this complexity, 
the search window can be limited by using a lower bound factor for each step i: 
lb=max{i-band,0}, where band is a parameter fixed by the user:  
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In practice we use band = 2*w/k, leading to the complexity O(w2/k).  

4   Runtime Synthesis 

Here a generic learning model for the control of a dynamical articulated model is 
used. The control policy associated to this learning method jointly achieves the kine-
matics and the dynamics inversion of the system. The kinematics inversion is carried 
out by a non parametric learning algorithm which processes the mapping (y, δx) → 
δy, y being the state and x the output of the system (ASM model) [12]. The error sig-
nals measured between the sensory output and the task input are used as corrective 
information to update the torque command of the movement system. 

The dynamics inversion is assured by a set of controllers acting on the pair 
(τ,δq/dt), τ being the forces applied on the joints, and dq/dt the angular velocity of the 
joint rotations. These controllers, classically used in robotics and computer animation 
and issued from linear control theory use Proportional Integrative Derivative principle 
(PID). For each internal joint, each PID controller takes as inputs angular position of 
the joint and its derivative as well as the desired angular position, and computes the 
torque output required to produce the desired displacement of the joint as expressed 
by the following equation: 
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rrτ  

where q is the angle of the joint, qT is the desired angle, Kp, Kd and Ki are the propor-
tional, derivative and integral gains. The effect of the PID controller is to eliminate 
large step changes in the errors, thus smoothing the simulated motion. 

5   Experiments 

In this section, the results of two experiments are presented. One concerns the analy-
sis process applied on motion capture sequences. The second highlights the synthesis 
process, using the result of the analysis process as the command input of the dynami-
cal system. The motion data used in our experiments were captured from a VICON 
optical system at the rate of 110 frames/second. We recorded end-arm movements of 
about three s duration. Subjects were told to perform about ten different random pat-
terns, varying the kinematics and the shape of the patterns.  

The analysis is conducted on 3D Cartesian trajectories of the arm extremity. We 
consider for hand-arm movements that these trajectories express the trace of the task-
based command. The  DPPLA algorithm is applied on these trajectories with varying 
compression rates that fix the number of targets on the trajectory. The algorithm  
segments the trajectory by assigning cut targets along the motion sequence. The  
objective is not only to detect these cut-points, but also to characterize the distribution 
of relevant samples along the trajectory.  
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The results of the DPPLA algorithm are illustrated in Figure 2 for a compression 
rate of 85%. This compression rate is an optimized parameter directly linked to the 
number of discrete targets extracted by the DPPLA algorithm.  Figure 2 shows the x, y 
and z curves of the end-extremity trajectories, both for the real motion capture data 
and for the simulated data, after applying the DPPLA algorithm. It also indicates the 

 

 

Fig. 2. Three-joint arm simulation with random pattern with a compression rate of 75%; x, y, z 
trajectories: real data (solid) and simulated data (dashed); motion separation points assigned by 
the DPPLA algorithm. The x-axis corresponds to the frame number, and the vertical bars spec-
ify the target points assigned by the algorithm; Reconstruction error. 

Fig. 3. (left) Trajectory of the human wrist in the Cartesian space with the localization of the 
targets: capture motion data and reconstructed data by linear interpolation; (right) Simulated 
trajectory of the wrist of the virtual dynamical humanoid 
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location along the frames of the cut-points (targets) that approximate the desired trajec-
tory and the corresponding absolute error between the real data and the simulated ones.  

Figure 3 (left) gives the shape of the real and reconstructed trajectories from the lo-
cation of the targets. Some attraction areas where the targets are more concentrated 
can be seen in this figure: they correspond to zones of larger complexity of the signal. 
The segmentation induced by the DPPLA algorithm can be considered as measured 
by the density of targets along the motion.   

Figure 3 (right) illustrates the simulated trajectory performed by the virtual charac-
ter. Some overshoots can be seen when the curvature is high, due to the fact that the 
dynamical parameters cannot be adjusted during the course of the simulated motion. 

These results demonstrate the tendency of DPPLA to increase the target density 
when the curvature increases. This correlation can be illustrated in Figure 4 with the 
superposition of the density function representing the spatial concentration of the 
targets along the motion frames, and the curvature function. Table 1 gives correlation 
factors between the two functions for three compression rates using a linear regres-
sion method. 

 

Fig. 4. (dashed)Target-based density evolving with time; (solid) Normalized curvature evolving 
with time. The areas where Target-density function is high correspond to areas with high  
curvature; this function segments the end-point trajectory. 

Table 1. Correlation factors between target-based density along the trajectory and curvature for 
different compression rates 

Compression rate Correlation factor  
65% 0.90 
75% 0.88 
85% 0.84 
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The DPPLA algorithm provides a way to adaptively sample the end-effector trajec-
tory according to the variations of curvature along the trajectory. The analogy be-
tween the spatial density of targets and the curvature leads to the investigation of the 
density function behavior compared with the well-known “two-third power law” [17]. 
The latter is equivalently expressed by a one-third power law relating tangential ve-
locity v(t) to radius of curvature r(t): 

3/1)()( trktv =  

This law, considered as a basic invariant characteristic of movement, has been 
demonstrated to be robust for 2D handwriting movements, and also for 3-D elliptical 
patterns. Figure 5 (up-left) illustrates this one-third power law for a random end-
effector trajectory. Figure 5 (up-right) shows that a similar power relationship exists 
between target-based tangential velocity vT(t) and target-based density function Ds(t) 
according to the DPPLA algorithm: 

γ
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Fig. 5. (up-left) Tangential velocity versus radius of curvature in logarithmic scale; (up-right) 
Target-based tangential velocity versus inverse of target-based density in logarithmic scale. 
Both figures are traced for the complex pattern trajectory presented in Fig. 3; (down-left) End 
effector elliptical trajectory with target location; (down-right) Target-based tangential velocity 
versus inverse of target-based density in logarithmic scale. 
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The power law between VT and 1/Ds is also observed for an elliptical pattern trajec-
tory (see Fig. 5 down-part) for which the γ coefficient has been estimated to be ap-
proximately 1.2. The degree of invariance of γ has not been established. In particular, 
it may depend on the type of performance (strength, speed, etc.). 

6   Discussion 

This study has dealt with an analysis-synthesis method that forwards the discretization 
of end-effector trajectories captured from human motion and provides the command 
input of a synthesis model controlling a hand-arm dynamical system. Our analysis 
method uses a Dynamic Programming Piecewise Linear Approximation (DPPLA) 
algorithm that extracts a sequence of multi-dimensional targets from the end-effector 
trajectory. These targets can be used as command input of a sensory motor dynamical 
system. The DPPLA algorithm automatically computes an optimal number of target 
points and their respective location along the motion frames. 

This discretization algorithm at the command level can be defined to identify low-
dimensional sub-sets of samples not uniformly distributed in motion time series. It 
can be used as a segmentation method to detect points where there is a higher com-
plexity of the trajectory. It also provides a means of reducing the data flow at the 
command level. Finally, by discretizing the command input it becomes possible to 
concatenate successive elementary motion without having to deal with the transition 
mechanisms.  

Experiments show the effectiveness of this discrete task-based analysis/synthesis 
approach. The analysis of motion capture data is conducted on a set of arbitrary 
end-effector trajectories. The compression rate can be fixed to a high level, while 
maintaining satisfactory simulation results. The discretized data are then used as 
command input of our sensory motor synthesis system. The animation is achieved 
on a hand-arm mechanical system with seven degrees of freedom, associated to a 
control policy based on a non-parametrical learning method. In the context of  
motion synthesis using a data-driven approach, it might be interesting to exploit 
discrete information that replaces motion capture data, without reducing the quality 
of the animation. 

This discretization mechanism is not only a mathematical tool which aims to  
reduce the data flow at the task-level. Indeed, it can be pointed out that the adaptive 
sampling is correlated to invariant laws of movement. The DPPLA algorithm seems 
to exhibit a power relation between sampled tangential velocity and the inverse of 
the sampled density function. The properties of this relationship, in particular the 
degree of invariance of the power parameter need to be further explored. Neverthe-
less, preliminary results tend to highlight the pertinence of the discrete patterns 
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extracted from the DPPLA algorithm and in particular the link between the targets 
distribution along the trajectory and the curvature. In order to prove the generaliza-
tion and the robustness of this law related to the DPPLA analysis method, more 
systematic tests should be conducted with various motion patterns performed by 
several subjects. 
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Abstract. This paper aims at describing a new method to simulate
the locomotion of hemiplegic subjects. To this end, we propose to use
inverse kinematics in order to make the feet follow a trajectory with re-
spect to the root frame linked to the pelvis. The 11 degrees of freedom
are then retrieved by inversing the kinematic function while taking other
constraints into account. These constraints, termed secondary tasks im-
pose that the solution ensures joints limits and energy minimisation. In
addition to those general constraints, the main originality of this work
is to take spasticity into account. This new constraint is obtained ac-
cording to the specificity of the subject’s pathology. The results show
that angular trajectories for the pelvis, the hips and the knees for the
simulated and the real motion are very similar. This preliminary work
is promising and could be used to simulate the effects of reeducation or
medical treatments on patients’ gait.

Keywords: inverse kinematics, locomotion, hemiplegia, spasticity.

1 Introduction

Using computer simulation and animation in biomechanics is a new approach to
performing motion analysis. Nevertheless, animation based only on kinematics
could generate unrealistic movements. Hence, to simulate human locomotion, a
large set of solutions is proposed in the literature [1]. Among these techniques,
inverse kinematics is widely used to ensure foot-contact with the ground without
sliding [2] or to adapt an existing movement to a different skeleton [3].

Several past works [4] have proposed an explicit method to solve inverse kine-
matics problems for limbs composed of only a few segments. These methods
are efficient for isolated upper and lower limbs but seem difficult to apply to
the whole body. To deal with more complex structures, the problem is gener-
ally solved using a linear approximation of the direct kinematics equation [5].
In some cases, several constraints can be applied, for example, controlling sev-
eral extremities or constraining centre of mass movements. This problem can be
solved by weighting each constraint [6]. [7] proposed a task-priority formulation
to take all of these constraints into account.

Whatever the technique is, because of the redundancy, there generally exists
an infinity of possible solutions. A secondary task is then proposed to select
a specific solution. The main problem is to determine the constraints that will

S. Gibet, N. Courty, and J.-F. Kamp (Eds.): GW 2005, LNAI 3881, pp. 236–247, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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help to compute a human-like movement. To this end, several methods have been
proposed. [8] offered to select the solutions that are close to captured trajecto-
ries for arm movements. [9] added a weight matrix in the resolution process. The
weights were identified by optimisation until the calculated movement resembled
a captured one. All these approaches are based on real movements and cannot
be used if no knowledge on the resulting movement is available (such as for simu-
lating new behaviors). A more general approach is to control also the position of
the centre of mass [10]. These methods are well adapted to quasi-static motions,
but are not suitable for movements involving dynamics such as locomotion.

Simulating a human-like motion is a complex problem because a large number
of parameters has to be considered, including energy, comfort, equilibrium, joint
limits, muscle activation, etc. To simulate such specific locomotion of subjects
with hemiplegia, the nature of the pathology also has to be considered. In this
paper, we focus on hemiplegic subjects with spasticity. The spasticity engen-
ders an increase in the stretching reflex linked to speed of muscle contraction.
As a consequence, the locomotion of such subjects is generally dissymmetric
with lower speeds than those of healthy subjects. [11] demonstrated that there
is no correlation between dissymmetry and walking speed but that individual
behaviors occurred. This result indicates that no general method can be directly
applied to a patient. [12, 13] reported a lower hip flexion during the balance phase
and a lower hip extension after foot-strike. They also pointed-out an exagger-
ated knee flexion at foot-strike and a lower knee flexion at the balance phase.
The latter is explained by a deficiency of the motor controller and spasticity
of the rectus femoris and the gastrocnemius. [14] demonstrated that cocontrac-
tions disorders influenced the metabolic energetic cost of walking in patients with
cerebral palsy. Moreover, several authors demonstrated that hemiplegic patients
generally spend more energy than healthy subjects do for walking at the same
speed [15, 16]. However, this difference tends to decrease when walking speed
increases [17]. In fact, the more the self-selected velocity of hemiplegic subjects
is near that of healthy subjects, the more the difference tends to decrease. This
means that self-selected speed is a reliable index of pathology level. Individ-
ual behaviors were again pointed-out. Of course, computer simulation makes it
impossible to measure directly energy expenditure. However, [18] demonstrated
that mechanical power estimates correctly the O2 cost of walking in subjects
with hemiplegia. As a consequence, energy requirements of a simulated walk
could be approximated by the computation of the corresponding internal work.

In this paper, we propose a new approach to simulate locomotion of hemiplegic
subjects with cerebral palsy. To do so, we propose to model spasticity through its
effects on the stretching reflex that decrease joint limits and angular velocity. We
focus on the rectus femoris and gastrocnemius that directly act on knee flexion
and extension. The method described in sections 2 is applied to a skeleton that
was fitted to anatomical landmarks taken on a real hemiplegic subject. This
technique is based on inverse kinematics and secondary tasks are used to take
pathology into account. In section 3, the simulated angular trajectories are then
compared to those of this subject to evaluate the model’s efficiency.



238 N. Fusco et al.

2 Modelisation

2.1 Inverse Kinematics to Model Human Locomotion

Given a set of anatomical landmarks measured on a real subject, we are able
to construct the kinematic function that links the angular representation of the
posture to the position of lower-body extremities. In this study, we focus on
the lower-body including the pelvis, femurs and tibias. The root frame of the
kinematic chain has its origin at the middle of the pelvis. Its orientation is
fixed meaning it has the same orientation as the pseudo-Galilean frame linked
to the laboratory. The pelvis can rotate along its main axes, i.e. it has 3 degrees
of freedom (DOF). Each hip is associated to 3 new DOF which simulate the
flexion/extension, adduction/abduction and medial and lateral rotation of this
typical ball and socket joint. Each knee is considered as a hinge joint with 1
DOF corresponding to the flexion/extension. The system is thus composed of 11
DOF (Fig. 1). The root frame is in fact that of the pelvis at the initial posture
with every angle set to zero.

Root frame

3 rotations
��

Pelvis frame

3 rotations
������

�������3 rotations
�����

�������

Left femur frame

1 rotation
��

Right femur frame

1 rotation
��

Left tibia frame Right tibia frame

Fig. 1. Structure of the 11-DOF skeleton

Hence, the position of each ankle with respect to F is:

X = f (θ) (1)

where X = (xl, yl, zl, xr, yr, zr) is the position of the effectors with respect to the
Cartesian position of the left and the right ankle, θ stands for the 11-dimensional
vector of angles applied to the DOF. The set of all θ is called configuration space.
From equation 1, we numerically compute the Jacobian of the system:

ΔX = J (θ)Δθ (2)

Given, the trajectories of the ankles in the root frame, referred to as poulaine
in the remainder of the paper, the primary task is ensured by inversing equation2:

Δθ = J+ (θ)ΔX (3)
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where J+ is the pseudo-inverse of J. As 6 constraints are applied to this 11-DOF
system, that leads to a 5-dimensional kernel space of J , termed Ker. This kernel
is the image of the configuration space by the matrix (I − J+J), I being the
unity matrix. Nevertheless, nothing ensures that the solution proposed with this
equation verifies constraints such as joint limits or energy expenditure minimisa-
tion. For this, a secondary task z is generally proposed to take those constraints
into account [5]:

Δθ = J+ (θ) ΔX + α
(
I − J+J

)∇z (4)

where α is a weight associated with the secondary task and z stands for a cost
function to minimise. Generally, this secondary task is solved iteratively with
the steepest descent method. On one hand, if several constraints are proposed
concurrently, the system tries to solve a least square problem. A compromise of
all the conditions is consequently found with this method. On the other hand,
some of the constraints (such as preserving joint limits) require strict verification
while others (such as energy expenditure) only need to be minimised.

2.2 Specifying Pathology Using the Secondary Task

When the primary task is solved we obtain an initial value Δθm :

Δθm = J+ΔX (5)

This solution has a minimal norm but nothing ensures that it respects joint
limits and produces realistic trajectories. If Δθm is a solution of equation 3 and
φ an element of Ker, then Δθm + φ is also a solution of equation 3. The goal of
the secondary tasks is to find the optimal φ that minimises a set of functions.
Let us call θt the current value of θ. To model the specific gait of hemiplegic
subjects, we chose the functions below:

– T1: To account for joint limits, we defined a continuous and derivable cost
function that rapidly increases beyond the joint limits. In this paper, we
propose an exponential function:

f1 (θt, Δθm, δ) =
∑11

i=1

(
eζ(αi−bupi) + eζ(blowi−αi)

)
with α = (θt + Δθm + (I − J+J) δ)

(6)

where bupi and blowi are respectively the upper and the lower joint limits for
the ith DOF. ζ is a constant coefficient that ensures a rapid increase when
the angle is beyond the joint limits and a rapid decrease when it is within
those limits (Fig. 2). δ is any element of the configuration space.

For subjects with cerebral palsy causing knee flexion/extension disorders,
the joint limits are customised. Hence, the maximum and minimum knee
angle were obtained specifically for this subject. A new function taking the
spasticity into account by also constraining the knee angular velocity with
a maximum value has been defined. This value was obtained by computing
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Fig. 2. Cost function f1 depending on an angle giving a maximum and a minimum
joint limit

the maximum angular velocity of the affected knee while walking at the
maximum speed. This angular velocity was multiplied by an empirical factor
1.2 to take a 20 % offset into account. The resulting angular velocity can
vary between 0 and max by adding a new function f1bis

.

f1bis
(θt, Δθm, δ) = eζ(α̇knee−vup) + eζ(vlow−α̇knee)

with αknee = (θt + Δθm + (I − J+J) δ)knee

(7)

where αknee is the knee angle of the affected side and α̇knee its angular ve-
locity, vup and vlow are respectively the upper and the lower knee angular
velocity limits. ζ is a constant coefficient that ensures a rapid increase when
the velocity is beyond the knee angular velocity limits and a rapid decrease
when it is within those limits.

– T2: minimising the rotational kinetic energy of each body segment:

f2 (θt, Δθm, δ) =
5∑

b=1

[
1
2
RbIbR

T
b

(
wb

(
(I − J+J)δ, Δθm

))2
]

(8)

where b stands for the body segment index, Ib is the inertia of segment b.
wb is a function that computes the angular velocity vector of segment b de-
pending on Δθm and the optimized parameter δ. Rb is the transform matrix
between the body segment frame and the root frame, computed from θt.
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– T3: searching for a solution close to the rest posture:

f3 (θt, Δθm, δ) =
∥∥θt + Δθm +

(
I − J+J

)
δ − θr

∥∥2 (9)

where θr is the angle at rest posture provided by motion capture on static
trials.

We propose to use the Multidirectional Search (MDS) method [19] to solve
this secondary tasks problem. It enables one to minimise cost functions wether
there are derivable or not and is less sensible to local minimum than the steepest
descent method.

According to an initial value which is the posture at the previous time step,
MDS evaluates among a set of neighbours the cost function fi. The neighbours
are selected by using a simplex Δ that is linked to all the main axes of the search
space:

Δj = {∀i, δj + β · unit (i)} (10)

where δj is the current solution at step j, β stands for the size of the simplex
and unit(i) is a vector composed with zeros excepted for the ith element (equal
to 1). Δj is a set of candidates that can be evaluated thanks to the cost function.
In order to cover a wider space of research, two operators are used: a contraction
(× 0.5 in our examples) and an expansion operator (× 2 in our examples). Those
two operators modify the simplex size by scaling it by real factors respectively
lower and greater than 1. Among all the resulting candidates, the system selects
the one that minimises the cost function. This candidate becomes the new cur-
rent solution δj+1. The process is repeated until a stable solution δ̂ is obtained
or the cost function goes under a given threshold ε set to 10−4 in our example.

The optimal solution of the inverse kinematics problem is given at next
step by:

θt+Δt = θt + Δθm +
(
I − J+J

)
δ̂ (11)

3 Experimental Validation

3.1 Experimental Set Up and Procedure

A volunteer with hemiplegia participated in this experiment after giving in-
formed consent. The subject age, height and mass were 25 years, 1.8 m and
mass 83 Kg respectively. This patient with cerebral palsy suffered from spastic-
ity of the right rectus femoris and right gastrocnemius so that his locomotion was
clearly affected. Three-dimensional kinematics of the subjects hemiplegic lower
extremity were documented with the Vicon370 motion analysis system (prod-
uct of Oxford Metrics, Oxford, UK). Seven infrared, 60 Hz cameras recorded
the location of thirty reflective markers placed over standardized anatomical
landmarks overlying the bony landmarks (Fig. 3). The subject’s motion data
was captured during gait test on a treadmill for walking speeds increasing from
0.5 to 1.1 m.s−1. Finally, the poulaines which are the effectors’ position for the
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Fig. 3. Anatomical landmarks used for motion capture

primary task, were obtained on the subject walking at 0.5 m.s−1. Given these
poulaines, the problem is to calculate realistic angular trajectories.

In order to evaluate the resulting simulation, we proposed to calculate the
Root Mean Square (RMS) which evaluates the difference between the simulated
and the captured trajectories:

Ci =

√√√√ 1
T

T∑
t=0

(
θi (t) − θ̂i (t)

)2
(12)

where t stands for the time and T for the total duration, i for the DOF and θ̂i

for the captured trajectory. In this equation, θ̂i is shifted to θi mean value.

3.2 Results

First, Fig. 4 shows that the primary task is absolutely ensured. In fact, the RMS
errors between the captured poulaines and those simulated are less than 1 mm.

Second, in Fig. 5, one can see simulated (continuous line) and experimen-
tal data (dashed line) angular trajectories for the hips and the knees. All the
simulated trajectories have a similar shape compared to real ones.

Regarding the subject’s pathological specificity, the simulated angular trajec-
tories of the affected side show a lower hip flexion during the balance phase and
a lower hip extension after foot-strike. However, the differences (around 0.1 rad)
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Fig. 4. Simulated and captured poulaines for the healthy and the affected leg, in the
frontal plane on the left and in the sagittal plane on the right

with the healthy leg are small. Futhermore, as reported in previous works [20]
the flexion of the healthy knee resembles a shape classically encountered with
healthy subjects. However, the flexion of the affected knee is far from a classical
shape encountered with healthy subjects. We observe an exaggerated knee flex-
ion at foot-strike and a lower knee flexion at the balance phase on the affected
side compared to the healthy one. The maximal flexion of the healthy side is
1.15 rad against 0.74 rad for the affected side.

Third, for the differents joints, as those reported in Table 1, the results showed
are very close to the real trajectory. Indeed, the RMS error value between the
simulated and the real angular trajectory is lower or equal to 0.11 rad.

In the same way, we compare the RMS error between the simulated Cartesian
position of each joint with those of the real movement. Again, Table 2 reported
error equal or less than 10 mm. These results indicate that Cartesian positions
are ensured by the simulation.

The results exhibit very similar Cartesian position while the angular trajecto-
riese simulated are very close to real ones for all the articulations. Nevertheless,
some differences occur. This seems to be mainly due to two reasons. First, the
application of the captured, and thus, noisy poulaine to the virtual patient. This
poulaine is obtained thanks to markers that slide over the skeleton. As proof
of this sliding, for some points, we obtain an instantaneous distance between
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Fig. 5. Simulated (continuous line) vs. captured (dashed line) angular trajectories for
the hips (a and b) and the knees (c and d)

Table 1. RMS error between the simulated and the real angular trajectories

Joints’ angles RMS (rad)
Pelvis inclination 0.03
Pelvis obliquity 0.10
Pelvis int/ext rotation < 0.01
Left Hip fle/ext 0.01
Left Hip abd/add < 0.01
Left Hip int/ext rotation 0.03
Right Hip fle/ext 0.01
Right Hip abd/add < 0.01
Right Hip int/ext rotation 0.10
Left Knee fle/ext 0.11
Right Knee fle/ext < 0.01

markers greater than dimensions calculated in the static trial. For example, the
minimum knee flexion is equal to 0.45 rad for the healthy knee in the real angular
trajectories. This is a very high value since this time corresponds to a foot-strike
where the knee is supposed to be quite extended. This problem could be solved
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Table 2. RMS error between the simulated and the real postion trajectories

Joints’ position Axis RMS (mm)
x 4

Left trochanter y 9
z 5
x 3

Right trochanter y 5
z < 1
x 1

Left Knee y 10
z 4
x 1

Right Knee y 1
z < 1

by retrieving actual joint centres instead of directly using external markers. Sec-
ond, we may implicate the choice of the secondary task. In fact, the secondary
task does not take into account all the parameters of the subject’s gait and his
pathology.

4 Discussion

We described a preliminary work to simulate the gait of hemiplegic subjects
with cerebral palsy. The pathology of a subject was modeled through constraint
equations. Those equations are obtained according to the subject’s pathology
specificity. The subject had a spasticity of the rectus femoris and of the gastroc-
nemius that engendered knee flexion disorders. We consequently proposed to
model its pathology by adding a function limiting his minimum and maximum
knee flexion and knee flexion velocity.

This methodological work obviously requires validation on a wider set of sub-
jects. Moreover, the poulaine that is applied as an entry of our model also con-
tains information linked to the subject pathology. To validate our model, it could
be interesting to use other poulaines : ranging from other subjects with cerebral
palsy to healthy one.

The possible applications of such a model are linked to reeducation.
First, it could allow us to carry-out fundamental research on the links be-

tween all disorders encountered with hemiplegic subjects. Hence, in the liter-
ature, the main problem is to define cause-to-effect links between observable
phenomena [18]. Nevertheless, as locomotion is the consequence of a large set
of coupled parameters, it is impossible to isolate the effect of one of them on
another. With simulation, it is possible to change only one parameter and verify
its consequences. For example, are the knee flexion disorders greater than step
duration dissymmetry for energy expenditure?

Second, for reeducation, this kind of model could be used to evaluate possible
consequences of several methods on energy expenditure. In the literature, it
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is demonstrated that knee flexion disorders causes a raising of the trunk and
the pelvis in the frontal plane during the balance phase of the affected leg. To
overcome this problem, it has been proposed to use controlateral shoe-lifts that
allow the subject to balance the leg without touching the ground and rotating
the pelvis. If the goal is to decrease energy expenditure while walking in everyday
life, is this strategy more interesting than retrieving a larger knee flexion?

For both applications, the poulaine could be captured on the patients so that
the main limitation of our method is lowered. Indeed, the goal is to have a
computer model walk as the real model while only changing a minimum set
of parameters (increasing joint limits, scaling the poulaine to increase the step
length, time-scaling the poulaine to obtain symmetrical cyles for examples).
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frederic.julliard@enib.fr
http://www.enib.fr/~julliard

Abstract. This paper presents a virtual reality application dedicated
to the ergonomic evaluation and adaptation of workplaces destined for
the physically disabled. Handiposte aims at assisting doctors and er-
gonomists as an interactive simulation based tool. After a general survey
about virtual reality tools oriented towards ergonomic studies, we pro-
pose a specific framework for the design of such an application using a
particular design methodology. We conclude by presenting a first proto-
type and by outlining future improvements.

1 Introduction

In recent years, an increasing interest in promoting the participation of people
with disabilities in working life has been shown. For example, ergonomic studies
could help design equipment and work arrangements to improve working pos-
ture and ease the load on the body of a disabled worker; thus reducing instances
of repetitive strain injury work related upper limb disorders. Ergonomists often
perform their analyses manually: on the one hand, it consists of measuring a
sample of workplace occupational features such as distances or angles and com-
paring them with worker’s anthropometrical data (physical analysis). On the
other hand, dynamical or procedural characteristics can be considered such as
fatigability level of a task due to its repetition level and its energy requirement
(physiological analysis). The evaluation process is then performed from a set
of ergonomics rules to improve physical and physiological ′fit′ between disabled
people and the equipement they use. Handiposte aims at assisting doctors and
ergonomists as an interactive simulation based tool. It allows to evaluate both
the physical and the physiological fitness between the disability level of a worker
and its workplace.

2 Previous Works

Only few works have focused on using immersive and interactive virtual reality
tools to facilitate the evaluation of people’s workplaces. Badler [1] has proposed a
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computer aided ergonomic tool called E-Factory to support the design of indus-
trial workplaces. It provides capabilities to detect collisions between the human
and the environment and to analyse reachability to ensure feasibility of human
tasks. A large number of humanoids and various direct or inverse kinematics
models are provided, but the objectives are quiet more different from ours: task
optimization and healthy criterions are firstly considered for able bodied people.
The tool is not also well suited for computer neophytes because of the designing
process which requires specific abilities in computer aided design.

3 Approach

As ergonomics deals with the interaction of technological and work situations
with the human being, Handiposte relies on a specific approach which dissociates
the workplace definition from the characteristics of the physically disabled person
(Figure 1).

Fig. 1. A twofold typology based approach

On the one hand, the workplace definition is reduced as a gesture typol-
ogy which expresses how occupational, functional and procedural features are
combined. That is to say that the working environment is described from a com-
positional and hierarchical set of elementary objects. To handle virtual worker
interations, each of these objects are described from their own degrees of freedom
and are controlled by specific finite state machines.

On the other hand, level and type of the disability are firstly anthropomor-
phically expressed as a geometrical H-ANIM model where admissible ranges of
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angles, lengths of segments or absence of limb are specified [7]. Other physiolog-
ical features such as recovery time fill out this disability description.

Then, the interactive and participartory simulation consists of performing
the calculation of the fitness function between workplace characteristics and
the disability level. To achieve this goal, the disabled humanoid runs a nominal
scenario viewed as a sequence of artificial gestures.

The previous approach significantly reduces the workplace design process by
focusing on ergonomic characteristics, and not on geometrical features.

4 Application

A first prototype based on the virtual reality C++ library ARéVI [6] has been
proposed in compliance with the previous methodology. It implements the follow-
ing functionality concerning both workplaces and motor control representations:

– An XML based language supports the design of the working environment.
Kinematic constraints and objects behaviors are thus hierarchically com-
bined in order to determine the way objects react to worker actions.

– An inline analyzing module allows to detect unreachable and uncomfortable
postures. It also permits to display physiological measures such as kinetic
energy expenditure.

Fig. 2. A first prototype implementing a lego-man assembling process
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– A set of motor control models based on direct and inverse kinematics ap-
proaches are used. These techniques have notably to be improved toward a
biomimetical approach with respect to natural motor control laws in order to
improve the accuracy of the analysing process [2] [3]. Theses motor control
systems have also to be assisted with a fatigue evaluation module such as
the one proposed in [4] where fatigue is derived from three main factors: task
repetitiveness, comfort level [5] and effort depending on energy expenditure.

Figure 2 shows an assembly factory implemented with HandiPoste. In this
example, a lego-man has to be jointed from several parts.

5 Conclusion and Future Works

The originality of the approach relies on a specific twofold typology. It allows for
the computer neophyte to design workplaces in a hierarchical and compositional
manner by associating a functional semantics to each object in term of technical
gestures. The semantics of the current gesture typology has notably to be refined
and generalized in order to be applicable to a larger number of workplaces.

The second remaining part of this work concerns the design of artificial ges-
ture models whose main objectives consists of expressing in a biomimetically
relevant view ergonomic factors such as performance, fatigability, hardness and
compensation strategies through specialized motor control models.
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Abstract. This paper presents an approach to model the gaze behavior of an 
Embodied Conversational Agent in a real time multimodal dialogue interaction 
with a group of users. The ECA's gaze control results from the merge of the 
outputs of a rational dialogue engine based on natural language interaction and 
face tracking of users.  

1   Introduction 

Social behavior is very important in face-to-face communication and is conveyed, for 
a large part, through gaze. In our current research, we are interested in modeling gaze 
behavior in order to increase face to face communication between a group of humans 
and a 3D Embodied Conversational Agent. It has been show [1] that gaze patterns can 
be extracted and correlated to dialogue structure in terms of turn-taking and nature of 
propositions (theme/rheme). 

This work, based on [2], is an attempt to make a complete system taking into ac-
count discourse structure, multi-users face tracking and eyes/neck coordination. The 
system is made of a behavior engine that takes input from a dialogue engine and a 
face tracking system. The behavior engine receives locations of the users face from 
the face tracking system. It also receives information about dialogue structure from 
the dialogue engine. Then, it computes the actions to be performed and send the 
command to an animation system. 

In the following, we mainly describe the behavior engine. We describe the face 
tracking system and the dialogue engine. We mainly focus on the strategy used by the 
behavior engine to gaze at the users. 

2   Behavior Engine 

The behavior engine is made of parallel hierarchical automates. It controls the ECA at 
several levels from biological needs, such as eyes blinking, to higher levels such as 
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expressions display. In this paper we only explain the hierarchy of automates that is 
used for gaze modelling. 

At the higher level, the gaze controller selects the action to be performed among the 
followings GazeAtUsers, GazeAway, GazeAnywhere based on the studies from  
[3, 4]. The gaze controller is made of five composite states Listening, Idle, Talking, 
Rheme and Theme, each of them is composed of three sub-states Start, Run and End, 
making a total of 15 states. In each state, different intervals of probability are assigned 
to actions and a random drawing is performed to select the final action to be executed. 
This algorithm is fully described in another paper to be published at IUI2006. 

 

Fig. 1. Gaze controller states 
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Fig. 3. Vestibulo-ocular reflex achieved by 
our system for a 30° target angle 

The second level, gaze servoing is used to control the movements over time. It also 
performs the task of selecting targets (for example selecting an imaginary target for 
GazeAnywhere). Finally, it makes sure that each user is being gazed at one after the 
other, taking into account users' distance from the avatar, and already performed gaz-
ing times when performing the GazeAtUsers action. 
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At the lower levels, the neck and eyes automates compute the parameters to be sent 
to the animation engine. The eye automate has the neck automate as parent, so eye 
control is considered as a subtask of neck control. This is because the main goal is to 
move the head in front of the target. The eyes, which move faster, adapt to the neck 
movements to track the best the users. In order to reproduce the vestibulo-ocular reflex 
described by [5], the neck and eyes angular speeds are computed at each time step as a 
function of distance (see Fig. 2). The result is that the eyes immediately focus on the 
target whereas the head, which is heavier, point at the target later. As the head moves 
toward the target, the eyes come back to the rest position as can be seen on Fig. 3. 

3   Dialogue Engine 

In order to drive the behavior engine, the dialogue engine must be able to insert addi-
tional information into the output utterances. At least, the dialogue engine should be able: 

– At a first level, to manage the global behavior of the avatar ; 
– At a second level, to mark at least the thematic/rhematic structure. 

In our implementation, the natural dialogue engine Artimis was used. This latter 
provides a generic framework to instantiate intelligent dialogue agents [6]. Artimis 
produces xml compliant output where theme and rheme clauses are clearly identified 
with <THEME> ... </THEME> <RHEME> ... </RHEME> tags. 

4   Face Tracking 

The incoming webcam video stream is analysed using the Convolutional Face Finder 
system (CFF) described in [7], which is able to robustly detect, in real time, multiple 
highly variable face patterns, of minimal size 30x30 pixels, rotated up to ±20 degrees 
in image plane and turned up to ±60 degrees. The CFF system returns the bounding 
boxes enclosing each detected faces. According to an average face model and calibra-
tion parameters estimated for the webcam, 3D coordinates of the detected face centers 
are estimated in the avatar coordinate system. Faces are tracked over time in a se-
quence of successive frames, taking into account possible detection misses and faces 
entering and exiting from the webcam field of view. 

5   Conclusion and Future Work 

In this system, we worked toward the integration of several aspects of gaze manage-
ment from the highest, target selection, to the lowest levels, vestibule-ocular reflex. 
The algorithm was also designed in order to gaze at several users in case information 
need to be delivered to a group of people. 

An evaluation has been conducted with users from of our research team and the 
system has been considered as producing convincing behaviors. We are starting in 
depth tests with a group of independent subjects. We are also planning to add more 
input to the system, such as, if the user is talking or not and also users positions from 
a 3D audio tracking system. It is also planned to enhance the animation by controlling 
pupils dilatation and eyelids movements. 
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Abstract. Both musicians and non-musicians can often be seen mak-
ing sound-producing gestures in the air without touching any real in-
struments. Such “air playing” can be regarded as an expression of how
people perceive and imagine music, and studying the relationships be-
tween these gestures and sound might contribute to our knowledge of
how gestures help structure our experience of music.

1 Introduction

With the exception of “classical music” contexts, where it is generally considered
taboo for listeners to make movements during public performances, listeners of-
ten spontaneously move their bodies, e.g. dance, tap their feet, nod their heads,
make gestures with fingers, hands, and arms, etc. One category of such move-
ments is known as playing “air instruments”, e.g. “air guitar”, “air drums”, and
“air piano”, meaning making sound-producing gestures without making physical
contact with any instrument, hence playing “in the air”. Often done in private
or semi-private settings (e.g. a pianist “playing” through a piece of music when
trying to recall it, or someone making an air drum performance to the music
at a party), some people also take the performance of air instruments very seri-
ously. This is apparent in national and international air guitar championships,
where the mimicry of sound-producing gestures (as well as other movements and
expressions) is developed to high levels of sophistication.

Besides demonstrating strong personal involvement with the music, we believe
air instrument playing shows some important principles of the mental coding of
musical sound for non-musicians (novices) and musicians (experts) alike. We
believe that images of sound-producing gestures are an integral part of the per-
ception of musical sound, i.e. of identifying, discriminating, grouping, or doing
“auditory scene analysis” [1] of musical sound, as well as of remembering, re-
calling and imagining musical sound, i.e. of musical imagery [2]. In taking air
playing seriously, we assume that what can be observed of overt behavior, also
reflects some essential features of covert mental images associated with musical
experience.
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When observing people playing air instruments, distinctions between sound-
producing gestures and other kinds of gestures may not always be so clear-cut.
Initially, we define sound-producing gestures as human movements made with
the intention of transferring energy from the body to an instrument, i.e. as
excitatory gestures, as well as human movements made with the intention of
modifying the resonant features of an instrument, i.e. as modulatory gestures
[3]. We have excitatory gestures such as hitting, stroking, bowing, blowing,
kicking, etc., and modulatory gestures such as shaking, flexing, deforming or
moving a mute. Furthermore, these gestures can have various modes of execu-
tion, such as fast, slow, hard, soft, short, long, etc., evident in several music-
related metaphors (e.g. “hammering”, “sweeping”, “caressing”). These various
modes of execution are often associated with what we like to call amodal, af-
fective or emotive gestures, which may potentially include all the movements
and/or mental images of movements associated with more global sensations of
the music, such as images of effort, velocity, impatience, unrest, calm, anger,
etc. In observing air instrument playing, such amodal, affective or emotive ges-
tures often tend to fuse with sound-producing gestures in the more strict sense
(i.e. excitatory and/or modulatory gestures). In some cases of air playing we
may also see more vague sound-tracing gestures, such as in following melodic
contours, rhythmical/textural patterns or timbral/dynamical evolutions with
hands, arms, torso, or whole body. Such gestures could be understood as
reflecting the total sonic evolution of the music more than the assumed sound-
producing gestures (see [4] for a more extensive discussion of gesture cate-
gories).

Air playing gestures may often be quite approximate or sketch-like, posing
several theoretical and methodological challenges (see sections 4 and 5 below),
but this vague, and inexact nature of air playing is also what we find so intriguing.
Observing how even novices make spontaneous air playing gestures which largely
match the music, makes us believe that there are important links between musical
sound and gestures in need of serious study. In the following sections we will
present some theoretical considerations, an account of observation studies we
have carried out, and some remarks on how we understand air playing in the
context of music cognition.

2 Auditory-Gesture Links

For trained musicians, the link between sounds and sound-producing gestures
are in most cases immediate and even involuntary [5]. Most musicians will prob-
ably agree that making, or merely imagining, sound-producing gestures is an
efficient strategy for recalling music, or even planning and carrying out musical
improvisation [6]. From such practical accounts, as well as from some experi-
mental evidence [7], it seems reasonable to claim that musical memory includes
procedural memory, i.e. memory for gestures, as well as auditory memory, i.e.
memory for sound. However, we believe there are more general reasons for the
close auditory-gesture links that we are studying here.
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From an “ecological” perspective, it seems quite clear that auditory perception
makes use of a number of cues and experience-based schemata when trying to
make sense of sound. In particular, identification of sound source, what Bregman
calls stream segregation [1], is important for making sense of the complex mass of
sounds that we are exposed to. Sounds are associated with causality, hence with
both sound-producing actions and resonating objects. As for resonating objects,
such as strings, tubes, plates, membranes, etc., we seem to posses a considerable
amount of “everyday” knowledge of features associated with various materials
and shapes, e.g. “metallic”, “soft”, “hard”, “hollow”, etc. Likewise, we seem to
have extensive ecological knowledge of the excitatory and modulatory gestures
used to generate sounds [8].

One of the most significant efforts to explore auditory-gesture links can be
found in the so-called “motor theory” of perception in linguistics [9, 10]. This
theory has claimed that language perception, as well as language acquisition,
is based on learning the articulatory gestures of the human vocal apparatus.
In other words: we can make sense out of what we hear because we guess how
the sounds are produced. Although this motor theory has been controversial,
recent neuro-imaging studies seem to support the idea of perception as an active
process involving motor cognition [11, 12]. There have also been suggestions of
close evolutionary links between speech sounds and gestures [13], and research
on gestures in speech contexts suggests that gestures not only are supplementary
to the verbal content, i.e. an element for added expression and emphasis [14],
but also instrumental in facilitating or even generating speech [15]. Lastly, we
believe ideas from recent neuro-cognitive research on motor elements in percep-
tion and cognition in general [16], fit quite well with the idea that there are close
links between sound and gestures. This neuro-cognitive research suggests that
we regard perception and cognition as an incessant simulation and re-enactment
of our impressions of the external world and of our bodies, implying that a
mental ”re-play” of sound-producing gestures would be part of making sense of
sound.

3 Motormimetic Sketching

Combining the term motormimetic, denoting the imitation of “real” sound-
producing gestures, and sketching, indicating the approximate nature of the im-
itation, we end up with the expression motormimetic sketching. Motormimetic
sketching can be an activity of both novices and experts, generating quite ap-
proximate, yet in our opinion, significant images of musical objects.

Imitating what we believe others are doing, either overtly or covertly, is in-
creasingly regarded as fundamental not only to learning and socialization, but
also for understanding what others are doing [17, 18]. Covert imitation is under-
stood to be at work whenever we see and/or hear others acting (although, in
some cases, children, as well as people with some mental disorders, may exhibit
overt imitation). Imitation, understood as a persistent activity when perceiving
the actions of others, seems to go quite well with the abovementioned motor
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theory of perception, i.e. that we mentally simulate the actions of others when
we are trying to make sense of the sounds they make.

Air instrument playing, understood as motormimetic sketching, is then an
egocentric, “I do” type of activity, imitating assumed sound-producing gestures
of even quite complex musical objects, and also by people who would in no
way be able to reproduce the heard music on an instrument. Thus, we speak
of a novice to expert continuum in this motormimetic sketching, as opposed to
a more sharp distinction we would make between people unable, and people
able, to play “real” instruments. One objective of our studies is to explore these
approximate renderings of sound-producing gestures by novices, as we believe
this could teach us something about how people who do not have any musical
training (and who even regard themselves as “unmusical”) perceive significant
global features in the music they hear.

As for the phenomenon of sketching, we were surprised to find so little research
within the cognitive sciences that dealt with this subject. The most relevant
discussions of sketching we have found are either in more art-oriented [19] or
in design-oriented literature[20]. As we know from sketching in the visual arts,
we may find a sketch quite salient, and well representing what it is supposed to
depict, in spite of the rather sparse number of pencil strokes. We may thus speak
of sketching, in the context of gestures, as a kind of “goal-directed imitation”,
what is called GOADI in [21], meaning that people (both children and adults)
seems to initially focus on some goal-points when imitating gestures.

In our context, we understand the phenomenon of motormimetic sketching
as follows: On first listening, we can make a spontaneous and quick tracing of
assumed sound-producing gestures, reflecting the rough outline and global feeling
(mood, sense of effort, sense of speed, etc.) of the music. Subsequent listening will
help in gradually refining and adding detail, but the overall shape and character
is usually manifest in the course of the first listening. In this way, motormimetic
sketching is a kind of top-down activity, as the overall shapes of the gestures
may set the frames for progressively finer details in the air playing.

4 Observation Studies of Air Piano Playing

To find out more about motormimetic sketching as a phenomenon, as well as
some associated theoretical and methodological issues, we conducted a series of
observation studies of air piano playing.

Subjects and sessions. Five persons with different musical and movement-
related training were recruited for the observation studies:

A. Novice. No musical or movement-related training.
B. Intermediate. Some musical training on different instruments, and some

movement-related training.
C. Semi-expert. Extensive musical training on several instruments and univer-

sity level music studies, but no movement-related training.
D. Semi-expert. Extensive musical training on piano and university level music

studies, but no movement-related training.
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E. Expert. Professional pianist with extensive university level training in per-
formance, but no movement-related training.

All subjects were informed about the purpose of the study, as well as how the
sessions were going to be conducted. This included explicit instructions about
trying as best they could to play air piano, by focusing their attention towards
making what they believed to be the sound-producing gestures best fitted to the
music they were going to hear. They were also told that the musical excerpts
might or might not be familiar to them, and that their initial air playing gestures
probably would come after the corresponding sounds, but as each excerpt would
be played three times, they would be able to adjust their gestures with each
repetition. The subjects were not allowed to see each other’s performance, and
only one subject and the authors were present in the studio during each recording
session.

The sessions took place at the Intermedia video studio at the University of
Oslo, featuring a blue screen background and high quality DV cameras. The
cameras were placed in front and to the right of the subjects, at a distance of 4
meters. Firewire web-cams placed in the same positions allowed for rudimentary
realtime video analysis, but it is the recordings from the DV-tapes that have
been the source for our analysis.

Musical material. The musical material used for the studies were excerpts of
piano music covering various playing techniques and styles:

1. Opening from Chopin’s Scherzo no. 2 in Bb minor op. 31 (17 seconds) [22].
2. Opening from Scriabin’s Sonata no. 5 op. 53 (10 seconds) [23].
3. Opening from the third movement of Beethoven’s 3rd Piano Concerto (16

seconds) [24].
4. Opening from Messiaen’s Regard des Anges from Vingt regards sur l’enfant

Jesus (22 seconds) [25].
5. Excerpt from Tokyo 84 Encore by Keith Jarrett (16 seconds) [26].

The excerpts were chosen so as to present different features such as large
pitch-space, salient phrases and attacks (excerpts 1 and 2), periodic and distinct
textures (excerpt 3), percussive and dense textures (excerpt 4), and more groove-
based types of textures (excerpt 5). The music was taken from commercially
available CDs and DVDs, and recorded on one continuous track to facilitate
playback and analysis. Each excerpt was repeated three times with 2 seconds of
silence between similar excerpts and 5 seconds of silence before new excerpts.

Data display and analysis. The approximate nature of air playing (no keys
to hit or miss, no fixed spatial coordinates), and the complexity of the gestures,
makes it a formidable challenge to make reasonably well-founded judgments and
analysis. Finding exact positions of hands and fingers in 3D from our video
recordings seemed too difficult, and not particularly interesting, at this stage.
Instead, we decided on an “eyes and ears” based annotation process.

As an aid in analysing the video material, we have developed the Musi-
cal Gestures Toolbox 1, a collection of patches built with the graphical music
1 A beta-version is available at http://musicalgestures.uio.no
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programming environment Max/MSP/Jitter [27]. Starting as a simple playback
tool for video files, with image adjustments, rotation and zooming, it has grown
to also include various types of motion-based analysis, sound analysis, preser-
vation of musical pitch when changing playback speed, “posture”-recognition
(figure 1), and automatic cropping. The latter function is particularly useful
since it allows us to easily focus on various parts of the body, for example only
the head or the hands. Also included are possibilities for saving snapshots and
image sequences of the video stream (figure 2), and making comparative analysis
of several video files (3).

Fig. 1. Output of a patch made for storing an image every time the change in quantity
of motion goes above a certain threshold. The original video stream and quantity of
motion images in the top row, and the last four saved images below.

Also, using the EyesWeb Motion Analysis Library2, we have looked at dif-
ferent types of movement features, such as the silhouette motion image (SMI)
feature which creates trails of recent movements, and is an efficient tool for
simulating the effect of short-term memory for trajectories, enhancing (or ex-
aggerating) the contours of movements. A decay function allows for variable
lengths of “lingering” and is useful for seeing gestures of pitch contours as well
as accents (size of attack movements).

We have experimented with various other data collection techniques for ges-
tures such as flex sensors, accelerometers, digitizing tablets, etc. but feel that the
main challenge for the moment is to develop a better conceptual apparatus for
dealing with sound-producing gestures and sound. Both gestures and sounds are
continuous, yet making sense of gestures and sounds alike requires chunking con-
tinuous streams into units. Hence, conceptually we have a fundamental duality of
the continuous and the discontinuous which we, for the moment, have simplified
to a duality of trajectories and postures. Both elements can give us important

2 See http://www.eyesweb.org for more information
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Fig. 2. Novice performer playing upward scales in the Scriabin excerpt. Although quite
approximate, this example shows that there is a relatively good pitch-space to imagined
keyboard correspondence (sequence running left to right, top row to bottom row).

Fig. 3. Output of a patch made for comparative analysis of three separate air piano
performances, showing a novice, semi-expert and expert performer from left to right.
The quantity of motion images with bounding boxes, are very useful when the move-
ments are so subtle that they are difficult to see in the original video.

insights on gestures, as can be seen from figure 2 where the continuous trajec-
tory is broken down into a series of snapshots. The postures can be understood
as goal-points [21], i.e. as important points for evaluating the correspondence
between sound-producing gestures and sound-events.
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5 Gestural Correspondences

In evaluating air piano performances, we have taken as point of departure the
minimum necessary real sound-producing gestures by any pianist to generate the
sound heard in the excerpts. This means simply that in any real performance
(i.e. not air performance) of the excerpts, keys have to be depressed by fingers in
order to produce the sounds, and hands/arms have to move in order to position
fingers so that they can depress the right keys. We use the term correspondence
here to denote the relationship between what we can observe in the air playing
and what would be the minimum movements necessary for any real performance
of the excerpts. All correspondences we refer here are based on our subjects’
fingers/hands/arms movements along an imagined keyboard (i.e. the horizontal
axis) and onset motions by fingers/hands/arms (i.e. the vertical axis), and are
ordered into the 7 categories of table 1.

In evaluating the air piano performances, we should note that although the
subjects, prior to the video recording sessions, all stated that they understood the
intentions of our air playing study, it is of course an open question to what extent
they themselves would distinguish between sound-producing gestures and other
more unspecific, yet music-related gestures such as head, torso, or whole body
movements. It should also be noted that the lack of force feedback in air playing
may have been awkward to some of the subjects, meaning that they would make
different gestures playing air piano than they would playing the real thing.

Considering the intrinsically approximate nature of air playing, as well as
the great difficulties we would have with a machine-based registration of sound-
producing gestures mentioned earlier, we have chosen to give approximate, qual-
itative labels to the different degrees of correspondence between sounds and
gestures that we have been able to observe. Using the various viewing tools men-
tioned in the previous section, we have carefully studied all the video recordings
of the air playing gestures of our five subjects across the five different excerpts,
but with the main focus on the last repetition of each excerpt (i.e. when the
subjects had become most familiar with the music). By making detailed annota-
tions, event-by-event, chunk-by-chunk, within each excerpt, we believe we have a
fairly broad, distributed basis for our correspondence judgments. In making these
judgments, we have also had a high degree of consensus amongst us (the authors).

We have chosen the following labels, and for convenience, assigned relative
score values to the labels, to denote degrees of correspondence between air play-
ing gestures and required real gestures:

– No correspondence, score value = 0, meaning the required sound-producing
gestures are not visible.

– Poor correspondence, score value = 1, meaning the required sound-producing
gestures are barely visible.

– Approximate correspondence, score value = 2, meaning the required sound-
producing gestures are clearly visible, but inexact or wrong with regards to
details.

– Good correspondence, score value = 3, meaning the required sound-producing
gestures are clearly present and also match quite well in details.
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Although these score values represent qualitative judgments of correspon-
dences, we have for the sake of comparison calculated simple averages for each
subject across the five excerpts used in our observation studies here, in order to
make the summary of correspondences in table 1. It should be remembered that
the five excerpts used were quite dissimilar, and they were deliberately chosen
to expose the subjects to a variety of sound-producing gestures. Yet, there is
still a fairly consistent level of performance by each of the subjects across the
excerpts, seldom resulting in greater correspondence degree differences than 1.

Table 1. Correspondences of observable air playing gestures by all subjects (A–E), on
a scale from 0–3, where 3 is good correspondence with the music. See text for details.

Feature A B C D E

1. Overall activity correspondence, i.e. density of gestures
in relation to density of onsets in the music, but re-
gardless pitch and onset precision

1.4 1.8 2.6 2.6 3

2. Coarse pitch-space/keyboard-space correspondence,
i.e. relative locations of hands left-to-right on an imag-
ined keyboard at phrase/section level

0.8 1.4 2.0 2.4 2.8

3. Detail pitch-space/keyboard-space correspondence, i.e.
relative locations of fingers on an imagined keyboard at
note-by-note level

0.2 0.6 0.8 1.6 2.4

4. Coarse onset correspondence, i.e. synchrony at down-
beat or event level (event in stead of downbeat in cases
of less or non-periodic music)

1.6 1.4 1.8 2.6 2.6

5. Detail onset correspondence, i.e. synchrony of finger
and/or hand movements at note-to-note level

1.0 0.2 0.8 1.8 2.2

6. Dynamics correspondence, i.e. size and speed of
hands/arms/body gestures in relation to loudness

1.0 0.8 2.2 2.8 2.8

7. Articulation correspondence, i.e. movements for ac-
cents, staccato, legato, etc.

0.2 0.2 0.8 1.8 2.4

As for the categories we have designated here, the idea was to proceed from
global to more detailed correspondences. Hence, in table 1, we start out with the
overall activity correspondence, followed by pitch, onset, dynamics and articula-
tion correspondences, hoping that this ordering should be informative as to how
different levels of expertise are manifest in different aspects of air playing.

Category 1 concerns the overall activity correspondence, i.e. the density of
gestures in relation to the density of onsets in the music, but regardless pre-
cision in onset-synchrony and pitch-space. This is a very coarse indication of
the overall gestural activity in the air playing, and reflects the general or global
impression of activity in the music such as agitated, calm, fast, slow, etc. Some-
times we could for example see a flurry of finger movements accompanying rapid,
note-dense passages, which will give a rather good correspondence judgment for
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overall activity, but poor values in terms of detail pitch and onset-synchrony.
Interestingly, novices scored relatively well in this category.

The next two categories concern relative pitch-space correspondences. Cate-
gory 2 indicates the coarse pitch-space to keyboard-space correspondence, i.e.
relative locations of hands left-to-right on an imagined keyboard at phrase/section
level. This implies a spatial resolution along the imagined keyboard at the octaves
level, and reflects the relative register in relation to the entire piano keyboard
at any given time. Some of the excerpts (Chopin, Scriabin, and Messiaen) were
chosen for (amongst other features) this prominent use of large registers, and
we can see that both novices and experts scored relatively well on this corre-
spondence. However, with category 3, where the focus is on detail pitch-space to
keyboard-space correspondence, i.e. relative locations of fingers on an imagined
keyboard at note-by-note level (in most cases roughly within the octave ambit),
we see that novices scored relatively lower than in categories 1 and 2, as did the
experts, but relatively less so.

For onsets, we have made a similar distinction between coarse and detail cor-
respondences. Category 4 indicates coarse onset correspondence, i.e. synchrony
at downbeat or event level (“event” instead of downbeat in cases of less or non-
periodic music, e.g. the Chopin, Scriabin, and Messiaen excerpts). The correspon-
dence is relatively good for novices and experts alike, something we attribute to
the salience of certain events in the Chopin, Scriabin, and Messiaen excerpts,
and to the clear periodic nature of the Beethoven and Jarrett excerpts. As was
the case for the pitch correspondences, the category 5 detail onset correspon-
dence, i.e. synchrony of finger and/or hand movements at note-to-note level,
shows on the whole less good correspondence than category 4 for both novices
and experts.

Lastly, we were also interested in correspondences regarding dynamics and
articulation. In category 6, we were looking for dynamics correspondence, i.e.
size and speed of hands/arms/body gestures in relation to loudness, something
that we believe is relatively well reflected in the gestures of both novices and
experts. However, with category 7, articulation correspondence, i.e. articulation
movements for accents, staccato, legato, etc., novices did not show much, but
the experts tended to be quite clear about these kinds of movements.

Since the values in table 1 are based on qualitative judgments, and since we
only had 5 subjects in this pilot study, we are reluctant to make more extensive
correlation processing of these values. However, it seems reasonable to conclude
that there is a continuum from novice to expert regarding overall, coarse cor-
respondences between the music and sound-producing gestures: Novices clearly
seem to perceive and make the corresponding gestures here. But for details
in pitch, onsets, and articulations, i.e. what we would consider textural detail,
novices seemed to make less and more inaccurate corresponding gestures.

6 Conclusions and Further Research

We understand air playing as motormimetic sketching, meaning that air playing
includes the twin components of imitative gestures and sketching. Imitating the
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gestures of others, in our case the innumerable gestures of musicians playing
which we have seen throughout our lives, seems to be a resource for making
sense of sounds. Although imitating sound-producing gestures may be a kind
of “tacit” knowledge, we believe it is a resource that could be more actively
exploited in both musicology and in various practical activities such as perfor-
mance, composition, improvisation, and music education. However, this would
require to acknowledge the value of sketching, i.e. of approximate, vague, “incor-
rect” gestures. This means to understand these gestural sketches as appropriate
and useful global images of music, as playing an important role in parsing and
chunking musical sound, as well as in grasping rhythmical, textural, melodic,
and harmonic patterns. We thus believe it is a good idea to continue exploring
air playing, as well as other sound tracing gestures. To do so, we also have to
work towards the following:

– Enhanced means for gesture tracking, hopefully providing us with useful
machine-generated data on movement trajectories.

– Enhanced conceptual and technical means for representing gesture trajecto-
ries and correlating these with sound.

– Better understanding of multimodal integration, in particular the neuro-
cognitive bases for gesture-sound relationships.
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Abstract. This paper focuses on the relationship between emotions induced by 
musical stimuli and movement. A pilot experiment has been realized with the 
aim to verify whether there are correlations between the emotional 
characterization of music excerpts and human movement. Subjects were asked 
to move a laser pointer on a white wall in front of them while listening to 
musical excerpts classified with respect to the type of emotions they can induce. 

Trajectories obtained moving the laser pointer have been recorded with a 
video camera and have been analyzed in a static and global way by using the 
EyesWeb platform. Results highlight a difference between trajectories 
associated to music stimuli classified as “fast” and  “slow”, in term of 
smoothness/angularity, suggesting the existence of  a strong link between the 
emotional characterization of the musical excerpts listened to and the 
movement performed. 

Subfield: expressive gesture and music. 

Keywords: subject interfaces; emotion; expressive gesture; motor activation. 

1    Introduction 

Research in human-computer interaction more and more needs to take into account 
the communication aspect related to the “implicit channel”, that is the channel 
through which the emotional domain interacts with the verbal aspect of 
communication (Cowie et al., 2001). In this context it is necessary to investigate how 
to communicate emotions to users and how to measure their emotional involvement. 

Concerning the latter aim, understanding the nature of the emotional responses can 
help to appropriately develop emotion-oriented systems (Camurri et al., 2004a). 

Several indicators can be taken into account to verify through which modalities an 
emotional phenomenon develops in human subjects: voice, facial expressions, 
physiological parameters, motor activation, etc. It seems necessary to consider 
emotional states as multimodal phenomena and to analyse also non-verbal aspects of 
emotional responses: psychological and neurophysiological research begin to show 
the importance of the movement component in characterizing an emotional process 
(Wallbott, 1998; Hillman et al., 2003; Berthoz and Viaud-Delmon, 1999). 
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The study presented in this paper focuses on motor activation as a component of an 
emotional process induced by musical stimuli. This investigation has been realized in 
collaboration with the group of Klaus Scherer (GERG, Geneva Emotion Research 
Group) of the Faculty of Psychology and Education Sciences of the University of 
Geneva in the framework of the EU-IST Network of Excellence HUMAINE (Human-
Machine Interaction Network on Emotion). 

The research investigates the component-process model of emotion of Klaus 
Scherer  (Scherer, 1984, 2000; Scherer and Zentner 2001), that considers emotions as 
constantly changing phenomena integrating more components. Scherer suggests a 
model of emotion that takes into account a synchronization of the different emotion 
components. In this model, emotion is defined as a sequence of state changes in each 
of five organismic subsystems: the cognitive system (appraisal), the autonomic 
nervous system (arousal), the motor system (expression), the motivational system 
(action tendencies) and the experiential system (subjective feeling). The processes 
occurring in these five subsystems represent different components of an emotion: 
physiological arousal, motor activation, subjective feeling, action tendency 
(motivational component) and appraisal (cognitive component). 

Our study focused on the motor activation component: a pilot experiment has been 
conducted aiming at verifying whether there are correlations between the emotional 
characterization of music excerpts and human movement, i.e. whether it is possible to 
refer to “expressive gesture” (Camurri et al., 2004a). The following sections will 
address the problem of measuring the emotional involvement in subjects, the 
performed experiment, the data analysis, and a discussion of the obtained results. 

2   How to Measure an Emotional Experience: The Choice of the 
Laser Pointer 

In our pilot experiment, music has been used as an emotion induction technique. To 
understand the relationship between music and emotion, it is necessary to investigate 
their time-varying relationships: continuous response methods allow one to record, 
during the listening process, the emotions induced by music without interruption.  

In order to obtain continuous measures of emotion, several types of self-report 
techniques, devices and interfaces can be used. Scherer and colleagues (Scherer et al., 
2002) suggested to use indicators (e.g. physiological recording, coding of non-verbal 
behaviour) other than verbal report, which may reflect inferences of emotional 
meaning rather than true reactions. Camurri and colleagues (Camurri et al., 2004a) 
performed an experiment in which participants indicated to what extent they were 
emotionally involved with the music by moving a MIDI-slider up and down. Schubert 
(Schubert, 2001, 2004a, 2004b) investigated a wide range of continuous measure 
devices used to record emotional response during listening to music. Our purpose was 
to find an adequate way to obtain measures of the emotional engagement, that were 
halfway between conscious (e.g. mouse, slider, haptic interfaces to communicate the 
experienced emotion) and unconscious (physiological measures: e.g., skin 
conductance, heart rate, breath rate, blood pressure (see Krumhansl, 1997a, 1997b); 
brain activity measures: e.g., EEG, PET, fMRI, magnetoencephalography (see Blood 
et al., 1999, 2001; Panksepp and Bernatzky, 2002)) conveyance. Our choice 
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considered subjects’ motor activation as a channel to convey emotional involvement, 
and a laser pointer has been chosen as interface. During the experiment, subjects can 
move freely the laser pointer thus drawing with the laser dot on a white wall in front 
of them. The resulting trajectories of the laser dot are considered expressive gestures 
(Camurri et al., 2004a) communicating the experienced emotion.  

The laser pointer is a simple interface to learn and to interact with, so it has been 
accepted very easily by subjects. Further, it has an interesting property: it plays the 
role of a sort of amplifier of small hand and arm movements. A few degrees of 
rotation or a small movement of the hand can be reflected in an ample spot variation 
on the wall. It is not requested to the subject to perform ample movements, which 
might result unnatural and difficult, but we rather aim at detecting small variations 
and perturbations of semi-conscious movements. We did not give any instruction to 
subjects: just to remain in the wall area in front of them. So, after some learning and 
tuning phase, subjects tended to move “semi-consciously” the laser pointer while 
concentrated only in listening. The amount of information contained in the laser 
trajectories may be surprisingly high: for example, geometric and repetitive patterns 
might imply a low emotional involvement of the subject (who is doing cognitive 
tasks, maybe distracted or bored by the music excerpt); sudden starts or stops, amount 
of changes in direction, etc. may reflect relevant moments of the emotional process 
going on during listening. Therefore, the performed pilot experiment suggests a new 
way to evaluate emotions induced by musical stimuli that overcomes the problem of 
verbal reports, by taking into account a non-verbal motor behaviour.  

3    The Pilot Experiment 

3.1    Subjects 

A group of twenty people (nine male and eleven female) from twenty-one to thirty 
years old participated to the experiment. Seven subjects out of twenty are musician, 
sixteen listen to music more than two hours in a week and six have already been 
involved in experiments about music and movement. 

3.2    Stimuli 

A set of music excerpts provided by GERG and already evaluated by subjects in a 
previous experiment done at GERG. The music excerpts include repeated sections 
and have, on average, the same duration (about two minutes). 

GERG selected eight musical excerpts classified with respect to the emotions that 
they evoke in subjects according to Scherer’s eclectic approach (Scherer, 2003) and 
that, in turn, are grouped into four different classifications (fast positive, slow 
positive, fast negative, slow negative, with two excerpts for each group): Chopin, 
Concerto n°1, Romance, Larghetto, measures 13-37, duration 2:03 (Pleasant, Slow 
Positive); Mendelssohn, Trio pour piano n°1, Deuxième mouvement, measures 1-26, 
duration 1:59 (Pleasant, Slow Positive); Bruch, Kol Nidrei, Adagio pour violoncelle 
et orchestre avec harpe, measures 9-25, duration 1:54 (Sad, Slow Negative); Albinoni, 
Adagio en sol majeur, measures 1-30, duration 1:56 (Sad, Slow Negative); Milhaud, 
Scaramouche, III Brazileira, duration 2:08 (Funny, Fast Positive); Saint-Saëns, Le 
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Carnaval des animaux, Final, duration 1:52 (Funny, Fast Positive); Bartok, Sonate 
pour piano, BB88, Premier mouvement, measures 183-end, duration 1:23 
(Aggressive, Fast Negative);  Stravinsky, Le Sacre du Printemps, Sacrificial Dance, 
measures 135-end, duration 1:59 (Aggressive, Fast Negative).  

Another music excerpt was used for a training session before starting the 
experiment: Rossini, La gazza ladra, Ouverture, measures 195-267, duration 1:06. 

3.3    Set Up 

The experiment was realized in a square room with soft lights, in order to allow one 
the detection of the laser’s movement without compromising the visibility and in 
order to create a soft, comfortable and as most as possible natural environment. A 
computer with the audio files was connected to a Yamaha Digital Mixer 01v that in 
turn was connected to two Genelec loudspeakers. A video camera Panasonic GP 
KR222 with an s-video cable and 12.5 optics was used to record the movement of the 
laser. Constant shutter and 25fps non interlaced were used. The outputs of the video 
camera and of the audio mixer were connected to a DV recorder Sony GV-D300E in 
order synchronize audio and video. AVI files were obtained from the DV recordings. 

3.4    Method 

Subjects were asked to move a laser pointer on a white wall in front of them while 
listening to music excerpts characterized with respect to emotions they can induce. A 
training session preceded the experiment so that the subjects gained familiarity with 
the task and the experiment set up and environment. Each subject listened to four 
music excerpts: one slow positive, one slow negative, one fast positive, and one fast 
negative. The choice and the order of the excerpts were completely random. While 
listening to music, the trajectories performed by the subjects on the wall were 
recorded with a video camera (except during the training session).After listening to 
each excerpt, subjects compiled a questionnaire (provided by GERG). The  
questionnaire contains a group of labels chosen on the basis of the eclectic approach: 
subjects used the same labels that identify the excerpts. 

From an analysis of the questionnaires it resulted that 65% of the subjects 
associated the characterizing label to all the excerpts they listened to, 15% only three 
times out of four, and 20% only two time out of four. At the end of the whole session 
each subject compiled a background questionnaire. 

4   Analysis and Results 

As a first hypothesis we assumed that the emotions induced by the musical stimuli in 
the subjects were really felt by them, accordingly to the questionnaire information. 

The main objective was to verify if the music excerpts evoked measurable motor 
activity: it has been necessary to look for correlations among features of the 
trajectories performed by subjects with the laser pointer and emotional 
characterization of the music excerpts a subject has listened to. The study started from 
an analysis having a global but static nature. The laser trajectories were integrated 
over time, obtaining for each video file a bitmap summarizing the trajectory followed 
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during the whole listening. Therefore, each bitmap represents a graphical subject 
response (GSR) from the listening of a single music excerpt. The first step of the 
analysis consisted therefore of a global analysis considering such overall trajectories. 
This kind of analysis of the global trajectory patterns appears to be useful not only to 
verify which information one can obtain, but also because it provides an effective 
empiric approach to the analysis of the laser movement. In fact, this approach also 
provides the possibility of verifying which movement cues explain the behavior of 
subjects and, therefore, which cues it could be interesting to extract in a subsequent 
dynamic analysis. The following steps summarize the analysis. 

4.1   Step 1: Extraction of Global Trajectories 

By using the EyesWeb platform (Camurri et al., 2000a, 2000b, www.eyesweb.org) we 
obtained GSRs displaying the continuous path of the laser pointer (Fig. 1).  

 

Fig. 1. The EyesWeb application for generating GSRs from subjects’ laser movements 

We obtained both a single, overall GSR for each listened musical excerpt, as well as 
multiple GSRs for each stimulus corresponding to the phrases composing the excerpt. 
In this preliminary analysis we started with the single overall GSR for each excerpt. 

4.2   Step 2: Identification of Relevant Trajectory Features 

The second step consisted of identifying a collection of descriptors to be employed for 
classification purposes. Such descriptors have to be related to specific features of the 
trajectory patterns. We identified the following features: angularity, rarefaction, 
spatial occupation, vertical symmetry, horizontal symmetry, central symmetry, 
compactness, lateral location, vertical location, angular tendency, and spatial 
extension. E.g., we can define angularity, rarefaction and compactness as follows: 

• Angularity: Arccos of the angle between two successive segments of the trajectory 
• Rarefaction: Density of the traced  points: white pixels / total  pixels in  the 

bounding rectangle (i.e., the  rectangle  containing  the  whole  trajectory  pattern 
drawn by the laser pointer)  

• Compactness: Use of the space by the subjects, e.g., if a subject use a portion of 
space (bounding rectangle) completely the pattern can be considered compact 
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4.3   Step 3: Providing Measures for Relevant Trajectory Features  

Measures of the above mentioned trajectory features were obtained through a manual 
annotation. To this aim, it was necessary to define precise, clear, and unambiguous 
criteria for evaluating these features in a way as objective as possible. For manual 
annotation every pattern was evaluated with a value from 0 to 4 with respect to each 
specific feature: this range is usually adopted in the literature in similar cases.  

4.4   Step 4: Evaluation of the Graphical Subjects’ Responses 

Five evaluators (different from the subjects participating to the listening experiment) 
performed manual annotation, in order to verify the degree of coherence among 
people. Average and variance of the five evaluations for each feature were calculated.   

4.5   Step 5: Statistical Analysis 

As a first step, a global overview of the data distribution was obtained. This 
preliminary qualitative analysis was useful for deciding how to perform a cluster 
analysis for grouping the patterns on the basis of similar values of the considered 
features. By observing the extracted GSRs, it appeared immediately evident that each 
subject had a well defined motor behaviour (Fig.2) and it is often possible to 
recognize a subject by looking at his/her GSRs.  

Our aim was to find out whether an invariant behaviour going beyond the intrinsic 
subjectivity  of  each person could be extracted with a static and global analysis of the 

            

Fig. 2. The four GSRs of a single subject 

 

Fig. 3. The mean of all the ratings (performed by the five evaluators) of all the GSRs with 
respect to each feature for the four emotions 
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subjects’ gestures. In order to verify this, the mean of all the ratings of all the features 
for the four emotions were calculated (see Fig. 3): each line in the figure is related to 
the emotional classification of the excerpts and each point on it represents the mean of 
all the ratings (performed by the five evaluators) of all the GSRs with respect to each 
feature. 

From this qualitative analysis it was possible to observe that there are some 
features that seem to be richer of information with respect to others: they enable to 
distinguish among the patterns, and explain a likely general behaviour of the subjects. 
For example, the motor behaviour with respect to angularity is well defined in all the 
subjects: the global patterns related to the excerpts emotionally classified as “fast” 
show high values of angularity, whereas “slow” patterns show low values of 
angularity, so the correspondent trajectories are smooth. Concerning rarefaction, 
another result emerges: the slow patterns seem to be more rarefied than the fast ones; 
music excerpts classified as fast probably induce a movement having a higher 
velocity, so the motor activation is high. Compactness is another feature allowing one 
to distinguish among the patterns: it is evident a difference between “fast” and “slow” 
patterns, since the latter are less compact. One can conclude that the critical features 
are angularity, rarefaction, and compactness, where angularity seems to obtain the 
biggest separation between fast and slow patterns.  

4.6   Step 6: Clustering Global Trajectories 

A cluster analysis was carried out to verify whether it was possible grouping the 
subjects’ patterns on the basis of the eleven evaluated features and whether there were 
correlations among the trajectory features and the emotional characterization of the 
music excerpts. This operation was performed on all the subjects’ patterns. Cluster 
analysis was performed with an EyesWeb application running the K-Means 
algorithm. Three different cluster analyses were performed: each of them obtained, 
respectively, four, three and two clusters. All the cluster analyses were also carried 
out first with respect to all the eleven features and secondly according to only the 
critical features, that is the features identified above. The triple choice of seeing what 
happens with the creation of four, three and two clusters is due to the fact that it 
would be interesting to verify if the evaluated features allow one to distinguish among 
the four emotional characterization or between fast/slow and positive/ negative 
patterns only. After comparing the results of the different cluster analyses and 
verifying what is the best approach, we performed the second step, that is, to verify 
how the values of the features are distributed in the obtained clusters. After 
performing the three types of cluster analysis, subjects whose graphical responses 
were put in the same cluster were eliminated, because of the apparent lack of 
differentiation among the different graphical responses. These subjects in fact 
distinguish from the others because of their behaviour invariance. A comparison of 
the results achieved before the elimination of the invariant subjects and after it, 
showed that, with the elimination, one obtains a better subdivision, in terms of better 
percentages, of the GSRs graphical subjects’ responses in the different clusters. 

4.7   Results 

After obtaining the clusters, the percentage of the emotional characterizations 
corresponding to them and the mean percentage value were calculated: the clustering 
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analysis highlighted that in all the cases of clustering the classification of the patterns 
improves considering only the critical features. 

To determine the most promising cluster analysis, we considered the mean 
percentage values associated to each clustering operation. After a normalization taking 
into account the number of the clusters and comparing all the mean percentage values, 
it emerged that the cluster analysis grouping the patterns in two clusters on the basis of 
the three critical features gives the best results. In this case, between the two different 
classifications, fast/slow and positive/negative, the best classification is the latter 
(positive/negative): in this classification the cluster analysis obtains the higher degree 
of differentiation. Anyway, both the classifications were evaluated. The next step was 
to consider the values of the three features in correspondence of slow, fast, positive and 
negative patterns. Here we compared the behaviour of fast and slow patterns and the 
one of positive and negative patterns. Concerning the fast patterns, these ones are 
prevalent in cluster 2, whereas the slow patterns are more numerous in cluster 1. 

Results show that the fast patterns in cluster 2 are very angular (80%), not rarefied 
(90%) and very compact (80%), whereas the slow patterns in cluster 1 are mainly not 
angular (50%, whereas the angular patterns are the 25% and the intermediate ones are 
the 25%), not rarefied (53.6%, rarefied 39.3% and intermediate 7.1%) and compact 
(64.3%, 28.6% not compact and 7.1% intermediate). 

These results suggest that the fast patterns can be separated from the slow ones on 
the basis of the angularity only.  

If one takes into account the positive/negative classification, the positive patterns 
prevail in cluster 1 and the negative ones in cluster 2. The negative patterns are 
angular (63.6%, not angular 27.3% and intermediate 9.1%), not rarefied (72.7%) and 
compact (63.6%). The positive patterns are angular (44.8%, not angular 38% and 
intermediate 17.2%), not rarefied (62.1 %, rarefied 24.1% and  intermediate 13.8%) 
and compact (82.8%, not compact 10.3% and intermediate 6.9%). 

These results suggest that, on the basis of these features, the positive and the 
negative patterns don’t distinguish from each other. 

Global results summarized in the following tables (Fig. 4 and Fig. 5). 

CLUSTER 1 FEATURES     

EMOTION Angularity   Rarefaction Compactness 

Slow    Low  (50%) Low  (53.6%) High  (64.3%) 

Positive High  (44.8%) Low  (62.1%) High  (82.8%) 

Fig. 4. Percentages values of angularity, rarefaction and compactness in slow and positive 
patterns in cluster 1 

CLUSTER 2 FEATURES     

EMOTION Angularity   Rarefaction Compactness 

Fast High  (80%) Low  (90%) High  (80%) 

Negative High  (63.6%) Low  (72.7%) High  (63.6%) 

Fig. 5. Percentages values of angularity, rarefaction and compactness in fast and negative 
patterns in cluster 2 
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5   Discussion 

The qualitative results achieved observing the graph representing the mean of all the 
ratings of all the GSRs’ features (Fig. 3) led to hypotheses that have been confirmed 
only in part by the analysis. The graph of figure 3 shows a well distinct separation 
between fast and slow patterns on the basis of angularity, rarefaction and 
compactness. The richness of information contained in these features was checked 
and confirmed by the cluster analysis: this kind of analysis showed that the best 
degree of separation of the patterns is obtained when they are grouped according to 
these features. Nevertheless, the cluster analysis allows one to distinguish fast and 
slow patterns on the basis of the angularity only. Therefore, it is possible to argue that 
the fast patterns could be, on average, angular and the slow ones not angular.  

One can conclude that subjects, moving the laser pointer, synchronize with the 
rhythm of the excerpts: if the velocity of the music increases, consequently the 
velocity of the arm movement increases as well as the direction changes frequently.  

Concerning the differences between positive and negative patterns, the considered 
features are not able to differentiate between them. 

Two conclusions can be drawn: either the choice of the features is, in this case, 
inadequate or the static analysis does not differentiate the different behaviour. First of 
all, some of the eleven features are certainly redundant since they do not allow one to 
obtain clusters that are coherent with respect to an emotional characterization. 
However, we kept the possibly redundant features in order to not lose information and 
evaluate at posteriori the relevance of each cue. Secondly, the loss of information due 
to the static analysis is another significant cause: the GSRs are considered in a 
temporal range comprising the whole subjects’ performance.  

6   Conclusions  

6.1   Future Developments  

This study aimed at investigating the link existing between music, emotions and 
movement. Music was used as an induction technique of emotions and motor 
activation of subjects was investigated with a pilot experiment using a laser pointer as 
means to communicate an emotional state in a continuous way. From a preliminary 
static analysis that focused its attention on the global patterns obtained by the subjects 
moving the laser pointer, it emerged that angularity is the feature that mainly explains 
the motor behavior: results show that graphical subjects’ responses (GSRs) 
corresponding to fast music excerpts have a high angularity, whereas those ones 
associated to slow music excerpts are smooth. In practice, subjects, moving the laser 
pointer, seem to synchronize with the rhythm of the excerpts: the faster is the tempo 
of the piece of music, the faster is the movement performed, and this increases the 
frequency of direction changes. Therefore, it seems that there is a strong link between 
the emotional characterization of the excerpts listened to and the movement 
performed, in practice a sort of resonance between music and motor activation. These 
results are confirmed by previous studies (Popescu et al., 2004), in which it was 
demonstrated that, during music listening, activity in motor-related brain structures 
correlated with measures of rhythmicity derived from the music. Our analysis shows 
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that, statically, the features proposed to characterize the GSRs are redundant and only 
the evaluation of the angularity enable a distinction between the patterns. Another 
result is that static and global analysis does not allow one to distinguish between 
positive and negative patterns, but between fast and slow only. These results provide 
indications about the approaches to follow in the future. The static analysis of whole 
trajectories provides an effective empiric approach to the analysis of the laser 
movement. In fact, this approach provides the possibility of verifying which cues 
could be extracted in a dynamic analysis. The idea is to verify whether some features 
already taken into account during the static analysis but not critical with respect to 
distinction between the emotional characterizations of the patterns, are more 
significant during a dynamic analysis. In performing a dynamic and punctual analysis, 
the (x,y) coordinates of the laser can be obtained frame by frame; trajectories can be 
analyzed and features can be extracted with the support of EyesWeb Trajectory 
Analysis Library (Camurri et al., 2004b). It is possible to verify also how movement 
punctually changes with respect to time and how such changes can be correlated with 
the musical structure. The idea is then to work on the dynamic behaviour of a single 
subject, trying to find out which are the cues explaining the expressive gesture 
generated by each subject and verifying in a second step, at a higher level, if there is a 
common behaviour among the subjects, not only in terms of same characteristic cues, 
but also relatively to a possible same dynamic of the cues themselves. 

6.2   The Need for a Novel Approach  

The experiment we performed highlighted several critical problems. The choice of the 
laser pointer as subject interface and the high degrees of freedom left to subjects in 
order to have naturalness and emotionally rich movements implies a high degree of 
variance in the motor behaviour of the subjects. The comparison at a low level 
demonstrated a high degree of subjectivity with consequent low evidence of a common 
behaviour among subjects. A new methodological approach aiming at evaluating the 
motor behaviour of the subjects seems needed: the idea is to work on the analysis of 
the response of the single subject and try to find analogies within the same subject. In a 
second phase, it should be searched analogies among subjects in a-posteriori and at a 
higher level of abstraction, in terms of dynamic profile of higher-level motor features. 
At different stages of the research it is necessary to understand the influence of the 
subjects’ profile on the obtained results in terms of correlation between stimuli and 
responses. Psychological profiles could be strategic in order to find inter-subject 
analogies and, at the same time, could contribute to a general theory. Moreover, in the 
definition of the relationship between music and emotion, there is the need to develop 
dynamic models explaining the dynamics of an emotional response. It seems necessary 
to try to find out whether there are correlations between the temporal profile of the 
stimulus and the vitality affect (changes in the temporal dynamic of an emotion). 
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Abstract. This work proposes a new way for providing feedback to
expressivity in music performance. Starting from studies on the expres-
sivity of music performance we developed a system in which a visual
feedback is given to the user using a graphical representation of a human
face. The first part of the system, previously developed by researchers at
KTH Stockholm and at the University of Uppsala, allows the real-time
extraction and analysis of acoustic cues from the music performance.
Cues extracted are: sound level, tempo, articulation, attack time, and
spectrum energy. From these cues the system provides an high level in-
terpretation of the emotional intention of the performer which will be
classified into one basic emotion, such as happiness, sadness, or anger.
We have implemented an interface between that system and the embod-
ied conversational agent Greta, developed at the University of Rome “La
Sapienza” and “University of Paris 8”. We model expressivity of the fa-
cial animation of the agent with a set of six dimensions that characterize
the manner of behavior execution. In this paper we will first describe a
mapping between the acoustic cues and the expressivity dimensions of
the face. Then we will show how to determine the facial expression corre-
sponding to the emotional intention resulting from the acoustic analysis,
using music sound level and tempo characteristics to control the intensity
and the temporal variation of muscular activation.

1 Introduction

Listening to music is an everyday experience. But why do we do it? For example
one could do it for tuning one own mood. In fact research results show that
not only we are able to recognize different emotional intentions used by musi-
cians or speakers [1] but also we feel these emotions. It has been demonstrated
by psychophysical experiments that people listening to music evoking emotions
experience a change in biophysical cues (such as blood pressure, etc.) that corre-
spond to the feeling of that specific emotion and not only to the recognition [2].

What happens when it is a computer listening to the music? In HCI appli-
cations affective communication plays an increasingly important role [3, 4]. It
would be helpful if agents could express what they perceive and communicate it
to the human operator.
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Animated agents are a new paradigm for human-machine interfaces. They
are entities with a human-like appearance capable of taking part in dialogs with
users. They communicate complex information through several modalities: voice,
intonation, gaze, gesture, facial expressions, etc. They are used in a variety of
applications for their ability to convey complex information in a quite human-like
manner, that is through verbal and nonverbal communication [5, 6, 7, 8, 9, 10, 11].

We present a real-time application of an expressive virtual agent’s face dis-
playing emotional behaviors in relation with expressive music. As the quality of
the music changes, the associated facial expressions varies. Emotions are mainly
displayed on the face through facial expressions, but another important factor of
the communication is how an expression is executed. Indeed a facial expression
is defined by the signals (e.g., raised eyebrows and head nod) that composed it
as well as their evolution through time.

In a previous research [12], we have developed a computational model of
gesture expressivity. Six dimensions have been defined and implemented. In this
paper we extend this work to the face. That is we provide a model to modulate
facial animation based on expressivity qualifiers.

In the next section we will present other systems in which visual feedback
of music performance is given through the animation of an virtual agent. Then
we will describe the CUEX system and the set of acoustic tone parameters that
are extracted from an expressive music performance. In the following, these tone
parameters are called acoustic cues. We will then turn our attention toward the
Greta virtual agent system. Section 4 describes the animation system while Sec-
tion 4.1 presents the six dimension of expressivity we consider. Next, in Section
we will expose our real-time application and we will provide information on the
mapping between acoustic and animation parameters. Finally we will conclude
the paper.

2 State of the Art

During the last 15 years, Japanese researchers have devoted great effort in the
so called KANSEI information processing [13]. This has been suggested as a new
kind of information technology to be investigated in parallel to the information
processing of physical signals (e.g. audio signals) and of symbolic descriptions
(e.g. text or music scores). Today, KANSEI information processing is applied
to emotional and human communication including visual art, design and music,
and it is also know as Affective Computing [14]. In more recent years research
in the field of multimodal communication has shown a growing interest. In par-
ticular, in the field of music performance, it has been developed applications
in which avatars can play instruments [15], dancers can establish a multimodal
communication with robots [16] and embodied conversational agents interact
with the user for example in a virtual theater [11]. More recently, Taylor and
co-workers [17] designed an application in which acoustic cues (such as pitch,
sound level, vocal timbre, and chord information) are used for driving the behav-
ior of a synthetic virtual character. For example, this synthetic character could
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turn his head towards the sound source more or less rapidly depending on the
characteristic of the timbre. This application is similar to that proposed in this
paper, in which more than one acoustic cue is mapped into the behavior of an
expressive animated human-like character.

3 From Acoustic Cues to Emotions

CUEX (CUe EXtraction) is a system developed at KTH and Uppsala University
for extracting acoustic cues from an expressive music performance [18] [19]. These
cues can be mapped into a 2-dimensional space that represents the expressivity
of the performance. For example the 2-dimensional space can be the pleasure-
displeasure and degree of arousal space proposed by Russell [20].

Acoustic cues that can be extracted by CUEX are articulation (legato or
staccato), local tempo (number of events in a given time window), sound level,
spectrum energy, and attack time. Research in music performance has shown
that musicians use acoustic cues in a particular way and combination in order
to communicate emotions when playing [21] [22]. Particular combinations and
relative values of the cues correspond to specific emotions. In 1 we present the
use of acoustic cues by musicians when performing for communicating happiness,
anger, or sadness as reported by Juslin [22].

In the system used in the present work, acoustic cues are mapped to an
“emotional space” using a fuzzy logic approach [23]. For example, if a piece of
music is played with legato articulation, soft sound level, and slow tempo it will

Table 1. Musicians’ use of acoustic cues when communicating emotion in music per-
formance (from [22])

Emotion Acoustic cues Emotion Acoustic cues
Sadness slow mean tempo Anger fast mean tempo

large timing variations small tempo variability
low sound level high sound level
legato articulation staccato articulation
small articulation variability spectral noise
soft duration contrasts sharp duration contrasts
dull timbre sharp timbre
slow tone attacks abrupt tone attacks
flat micro-intonation accent on unstable notes
slow vibrato large vibrato extent
final ritardando no ritardando

Happiness fast mean tempo rising micro-intonation
small tempo variability fast tone attacks
small timing variations bright timbre
high sound level sharp duration contrasts
little sound level variability staccato articulation
large articulation variability
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be classified as “sad”, while it will be classified as “happy” if the performance
is characterized by a more staccato articulation, louder sound level, and faster
tempo.

For the purpose of the present work, a real time version of CUEX based
on pd is used. CUEX analyzes an input audio signal (a sound file or an audio
stream) and provides the acoustic cues in output. A second pd patch takes
these cues in input and maps them into emotions. In a recent application called
the “ExpressiBall” both cues and emotions are visualized using a 3-dimensional
object moving on the computer screen [24]. The object, a ball, changes position,
size, and shape according to the acoustic cues, while the colour corresponds to
the current emotion 1 [25]. The main idea of ExpressiBall is to provide music
students with non-verbal and informative feedback while they practice to play
with expressivity.

A recent review of 104 studies of vocal expression and 41 studies of music
performance [1] reveals strong similarities between the two channels (voice and
music performance) in the use of acoustic cues for communicating emotions.
This could explain why listeners perceive music expressing emotions. This result
opens for the experiment in the present work, i.e. to provide visual feedback to
music performance by means of an expressive agent.

Fig. 1. The ExpressiBall: graphical interface for real-time feedback of expressive music
performance. Dimensions used in the interface are: X = tempo, Y =sound pressure
level, Z =spectrum (attack time & spectrum energy), Shape = articulation, Colour =
emotion. Left figure shows the feedback for a sad performance. Right figure shows the
feedback for an angry performance.

4 Real-Time FeedBack Agent

In this section we describe the virtual agent system we use as visual feedback
for the acoustic cues extraction system CUEX. Our agent system, Greta, is an
embodied representation of a virtual human able to communicate verbal and
non-verbal behaviors (such as facial expressions, gaze, head movement) [26].
Based on theoretical studies [27, 28], we have developed a set of modifiers that
modulates movement quality of a specific behavior [12]. We refer to the manner of
behavioral execution with the term expressivity (see section 4.1 for a description
of our set of modifiers).
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The agent system linked to CUEX ought to provide continuous feedback to the
user; it needs to produce animation in real-time where the animation parameters
vary depending on the acoustic cues (see section 3). A schematic representation
of our system is given in figure 2.

Fig. 2. The Greta’s architecture

For the current application, the animation of the agent is controlled by spec-
ifying which signals to perform. These signals are dynamically altered by a set
of expressivity parameters (see 4.1). Examples of signals are:

– move head : the agent changes head direction. A new target orientation for
the head (corresponding to a given rotation around the x and/or y axis) is
specified. The head reaches it and finally turns back to its original position;

– blink : the agent performs an eye blink;
– assume expression (e): the agent shows the specified facial expression e.

To avoid a frozen agent during idle time, a function generates Perlin Noise
[29] for the head orientation. This function is also applied to the head orientation
during activity intervals creating slightly changed positions.

The Greta system calculates on-the-fly the appearance of the agent’s face
at given time. Concurrently it decides if any of the possible signals has to be
performed or not. It also instantiates eye blinks. The action of performing eye
blink is needed to simulate the biological need of keeping the eye wet. This kind of
blinks appears every 4.8 seconds in average [30]. But this temporal characteristics
varies depending on the actual emotion. For example the frequency of execution
of blinks will decrease for emotions like sadness while it will increase during
anxiety [31].

4.1 Greta’s Expressivity

The Greta’s behavior expressivity is parameterized by a set of dimensions of
expressivity [12]. They modify the animation of the agent qualitatively. The 6
dimensions are:

– Overall activation: amount of activity (e.g., passive / static or animated /
engaged), number of movements per time (head movement, gesture).
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– Spatial extent : amplitude of movements (e.g., amplitude of raised eyebrow
and head rotation). This parameter is somehow linked to the quantity of
muscular contraction. It also increases/decreases the amplitude of head ro-
tations.

– Temporal extent : duration of movements (e.g., quick versus sustained ac-
tions). Low values produce movements that last very shortly (e.g., the
head quickly returns to the rest position) while higher values produce
longer ones (e.g., the head remains rotated for some longer time, then it
returns).

– Fluidity: smoothness and continuity of movement (e.g., smooth, graceful ver-
sus sudden, jerky). This parameter acts on the continuity between consec-
utive facial expressions and head movements. Figure 3 shows two examples
of different settings for the fluidity parameter.

– Power : dynamic properties of the movement (e.g., weak / relaxed versus
strong / tense). Higher / lower values increases / decreases the acceleration
of movements, making movements become more or less powerful. Figure 4
shows some examples of curves with different tensions.

– Repetitivity: this factor allows one to repeat the same expression several time
in a row.

Fig. 3. Fluidity variation: left diagram represents normal fluidity, right diagram rep-
resents low fluidity for the same behavior

Fig. 4. Tension variation: left diagram represents low tension, right diagram represents
high tension for the same keypoint animation with the presence of overshooting before
the reaching of the fist keyframe
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5 The Music2Greta FeedBack System

The music feedback system uses an agent as visual representation of the commu-
nicated music expression. It has been realized by interfacing the output of the
acoustic features extraction system CUEX described in section 3 with the input
of the Greta system described in section 4. In the next section we describe the
structure of the system and the mapping between acoustic features and expres-
sivity parameters. Figure 6 is an example of a possible sequence of animation
frames produced by the system.

As shown in figure 5 our Music2Greta system is composed by the CUEX sys-
tem and the Greta agent that communicate through a TCP/IP socket. Acoustic
cues resulting from the CUEX elaboration are transmitted to Greta in real-time.
The Mapping module receives them and calculates (see next section) the values
to assign to the Greta’s expressivity parameters.

What we are focusing on here is the Mapping module in figure 5. Table 2
sumarizes the correspondences we implemented inside this module.

Fig. 5. Music2Greta architecture

Table 2. Parameters correspondence between CUEX and Greta

CUEX Greta
1. Emotional intention Face expression
2. Emotional intention All parameters
3. Volume Spatial & Power
4. Tempo Temporal & Overall activation
5. Articulation Fluidity



From Acoustic Cues to an Expressive Agent 287

Fig. 6. This sequence shows an example of the output of the Music2Greta feedback
system. From left to right and top to bottom we can see the agent rotating her head to
look up-left. Then the expression changes from joy to sadness while the head rotates
down-right.

As shown in lines 1 and 2 the emotional intention affects both the emotion
shown by the agent and its expressive parameters (that is the way the agent will
modulate its behavior). Then there is a correspondence between the acoustic cues
extracted by CUEX and the agent’s expressivity parameters. The next sections
focus on each of these correspondences.

5.1 Emotion Intention to Facial Expressions

At every system clock, the CUEX system determines to which emotion the music
corresponds to: happiness, anger, or sadness. The emotion with the highest value
is selected. This information directly influences the emotion shown by the agent
by the execution of an assumed expression signal. A representation of the emo-
tion is retrieved from the face expression library of the agent and applied to the
graphical representation of the face. The expression is hold until the perceived
emotive content changes and another intended emotion is sent to Greta system.
Information on emotional content also affects the way in which the agent blinks
(for example, high emotive emotions like anger will increase the frequency of
blink; sadness will decrease them).

5.2 Emotion Intention to Expressivity Parameters

Many research work focused on the influences that emotions have on the physical
behavior of humans, not only on the the facial expression. Boone & Cunningham
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[32] observed how children perceive emotion in expressive body movements and
highlighted that for example slow movements are usually recognized by adults
as a sadness emotional state. Abrillian et al. [33] analyzed multimodal behavior
from a video corpus made of TV clips with emotive content. Wallbott studies
[27] on non-verbal communication of acted emotions revealed that for example
hot anger emotion causes an increasing of movement activity/expansivity and
movement power/energy; elated joy .... and sadness ...

In the Greta2Music system, we apply similar mapping between emotions and
expressivity parameters as reported in Wallbott [27]:

– Anger: agent’s face becomes reddish and head moves towards the user. Eye
blink frequency increases [31]. Temporal, spatial, power parameters are in-
creased and fluidity is decreased. The result of these modifications is that
the head’s animation looks faster, more wide and less smooth.

– Sadness : agent’s face becomes pale, head moves backward and looks mainly
downwards. Eye blink frequency decreases [31]. Temporal, spatial, power
parameters are decreased and fluidity is increased. That is the head’s ani-
mation appears to be slower, less wide and more smooth.

– Joy: head looks towards the user and spatial, power and fluidity parameters
are increased. So the head’s animation results in a more wide, energetic and
fluid movement.

5.3 From Acoustic Cues to Expressivity Parameters

The mapping from acoustic cues to expressivity parameters is inspired by re-
sults of a recent study on musician gestures in emotional expressive perfor-
mance [34][35]. Dahl and Friberg found that musicians’ body movements are
correlated with their emotional intention. In particular viewers could recognize
the emotional intentions just by watching video recordings of performing musi-
cians without listening to the audio channel. The observed main characteristics
of musicians’ body movements for four emotional intentions were:

– Happy: normal movements, normal fluency, normal speed, and normal overall
amount of movement

– Angry: irregular movements, jerky fluency, fast speed, and larger overall
amount of movement

– Sad : more regular movements, smooth fluency, slow speed, and smaller over-
all amount of movement

– Fearful : irregular movements, jerky fluency, fast speed, and smaller overall
amount of movement

Keeping in mind these observations as starting point, the extracted acoustic
cues, namely sound level, tempo and articulation, are linearly mapped into the
corresponding expressivity parameters using simple scaling to adapt their ranges
of variation:

– Volume: the current sound level of the music performance is linearly mapped
into the Spatial and Power expressivity parameters. E.g., it will influence
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the degree of rotation of head movements as well as their acceleration and
quantity of overshooting.

– Tempo: it represents the speed of the musical performance and influences
the Temporal and Overall activation expressivity parameters. The first ef-
fect will be to vary the duration of head movements, the second will be to
increase/decrease the frequency of head movements.

– Articulation: it reflects the style and the quantity of the articulation in the
music performance, i.e. the amount of staccato or legato. It will vary the
fluidity dimension. For example it will act on the continuity of the head
movements making them less continuous and less co-articulated as the ar-
ticulation becomes more staccato.

6 Conclusions

In this paper we have presented a system that provides real-time expressive visual
feedback of music performance. As the music expressivity changes the facial
expressions and the quality of movement of the agent get modified accordingly.

We aim at evaluating the system to test if the perception of expressive vari-
ations in music performance is enhanced using the agent as visual feedback. We
are also interested in looking at what happens when there is a mismatch between
musical quality and facial expression and behavior of the agent.

Further improvements to the system are also foreseen. The computation of
the intermediate expression between 2 emotions will provide more consistent re-
sults by implementing the emotion representation along the activation-evaluation
space, based on the work of [36]. The interpolation between 2 emotions will cor-
respond to a curve in space where each point in space may correspond to an
emotion for which a facial expression can be computed [37].
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Abstract. In this paper we present methods for analysis of the emo-
tional content of human movement. We have studied orchestra conduc-
tor’s movements that portrayed different emotional states. Using signal
processing tools and artificial neural networks we were able to determine
the emotional state intended by the conductor. The test set included var-
ious musical contexts with different tempos, dynamics and nuances in the
data set. Some context changes do not disturb the system while other
changes cause severe performance losses. The system demonstrates that
for some conductors the intended emotional content of these movements
can be detected with our methods.

1 Introduction and Background

Emotionally aware computer systems are a new and interesting research field.
Emotion detection is a crucial part of making a system that can take emotions
into account. Especially facial expression and voice have been tackled by re-
searchers. These modalities have also been combined for more robust gesture
recognition [1]. Even mice have been made emotion-aware. Physiological signals
can also be used to track the emotional state of a person [2]. Kang has published
a system that tracks the emotional state of a video stream [3].

In contrast little research has been published that would use hand or body
motion as the starting point. Drosopoulos has published a system that aims to
detect emotions based on the gestures that a person makes [4].

Movements usually convey more than emotions, there is a context for them.
A unique feature of our research is that context changes were included in the
tests. In these tests the context changes were presented by change of musical
parameters; dynamics, tempo and character.

2 Collecting and Processing Data

Emotions cannot be measured directly. In these tests we asked a person to man-
ifest a feeling. Conducting brings another layer of expression parallel with the
emotional content — musical content and context. Nuances (staccato, legato)

S. Gibet, N. Courty, and J.-F. Kamp (Eds.): GW 2005, LNAI 3881, pp. 292–295, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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and dynamics (piano, forte) also affect the motion. The musical environment is
the context of the motion.

The conductors wore a data suit that contained magnetic motion tracking
sensors. The conductor was asked to conduct short a passage of music with-
out a band with given emotional content. The emotional and musical content
changed during the passage. Musical parameters were also varied and expressed
simultaneously, resulting in superposition of parameters. Variables were dynam-
ics (piano / forte) and character (staccato / no character / legato). Passages
were performed in four tempos (about 56, 80, 120 and 160 beats per minute).
Since the emotions also varied the number of permutations of all parameters
gets easily very large. The data set used in analysis contains about 20 takes per
conductor with each take containing four combinations of parameters. Since we
want a separate test set a few extra takes were also recorded — duplicating some
of the parameter combinations of the first data set.

The process by which humans detect the emotional content of motion is not
known. At any rate the form of the motion must play a role in the recognition
process. To somehow mimic this process we calculate parameters (features) from
the motion. This calculation acts as preprocessing for ANNs. The preprocess-
ing must transform the absolute motion curves to more general and abstract
parameters. These parameters should not be affected by tempo, nuances or dy-
namics. We tested various preprocessing methods. We used the Cartesian coor-
dinate position and rotation metrics as the basic information. These parameters
were then transformed to velocity, acceleration and curvature spectrograms, his-
tograms and filterbank outputs. We used artificial neural networks (ANNs) as
analysis tool. To produce the figures in this paper, only self-organizeng maps
(SOM) were used.

3 Results

In general, we found that the system can detect emotions implied by hand move-
ments. The performance of the system depends heavily on the conductor. In these
tests only two conductors participated.Results in this paper were obtained with
the conductor that was easier for the system to analyze.

It was found that the characters legato and staccato confused the ANNs
greatly. Since we found no way to fix the problem these characteristics were left
totally out of the analysis. As a result the parameters that were varied in the
test set were dynamics, tempo and emotion. We were only interested in emotion
— the other parameters were varied to represent changing context. The effect
of tempo range used was briefly tested. When the system only needs to analyze
tempo 80 beats per minute it performs much better than when given the full
range of tempos (see figure 1).

A widely used analysis approach is to classify the emotions to a fixed number
of emotions e.g. categorization of emotions to N mutually exclusive classes. In
this case we used neural networks that had N outputs — one output per emotion.
The output with largest activation is then assumed to represent the emotion.
Based on this one can calculate the confusion matrix that indicates how well
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Fig. 1. Confusion matrices in various situations

the analysis worked (figure 1(a)). In the matrix the title of each row indicates
the intended emotion and the pie charts on the row indicate how the system
interpreted the motion samples corresponding to that emotion. In the ideal case
the diagonal elements of the matrix would be one and all others zero. By using
random choice, one would get 17 percent (one out of six) of choices correct. In
figure 1(a) the ratio of correct choices is between 20 and 80%.

By considering the emotional space as a low-dimensional continuum one can
drop the number of dimensions of the emotional space. We used two-dimensional
space illustrated in figure 2. The same figure shows how emotions we used were
mapped to the space. We chose locations that appeared feasible. The ANN was
trained to create an output vector that is correctly located in this emotional
space. Figure 3 displays results obtained with one ANN. In the optimal case the
ANN output of each emotion would be clustered to match the positions given in
figure 2.
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Fig. 3. Distribution of ANN-estimations in arousal/valence space

4 Conclusions and Future Work

These are first results on a new field of study — how to determine the emotional
content of human motion. As a qualitative result we can state that the gestural
manifestation of emotions can be detected with computers. With only two test
persons little can be said about how the system might work in the general case.
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Abstract. In this paper, we introduce some exploratory ideas and ap-
plications involving the gestural control of sonic textures. Three examples
of how the gestural control of synthesized textures can be implemented
are presented: scratching textures, based on the gesturalized exploration
of a visual space; dynamic noise filtering, where gestures influence a vir-
tual slowly moving string used to filter a noise; and breathing textures,
where the metaphor of breathing is used in the sound as well as in the
gestural control. Lastly, we discuss how to find connexions between ap-
propriate gestures and sonic texture processes, with a view to producing
coherent and expressive digital musical instruments.

1 Sonic Textures and Gestural Control

Sonic textures are characterized by both microscopic and macroscopic features:
on the short term scale, they are composed of a series of microstructural com-
ponents which are subject to some randomness; whereas on the long term scale,
some temporal and spectral cohesion is preserved. Sonic textures can result ei-
ther from a process of computer analysis and synthesis or from synthesis alone
[3]; the three examples we present in this paper are of the latter kind. Sound
synthesis can be controlled by gestures using sensors connected to a computer.
The link between gestural data and the synthesis parameters is called “Map-
ping” [1]. It is only when the gesture is properly linked to the sonic process, not
only technically but especially at the human emotional level, that one can speak
of a digital musical instrument.

2 Gestural Control of Sonic Textures: Some Examples

2.1 Scratching Textures

This digital instrument prototype is based on the gesturalized exploration of a
visual space. It involves the real-time implementation of the Functional Iteration
Synthesis (FIS) [3] driven by a bi-manual gestural control using a tablet-screen
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Fig. 1. Left: the scratched gestural control using a tablet and a joystick. Right, two
orbits created by direct control (orbit 1) and by parametric control (orbit 2).

and a joystick. FIS is an algorithm resulting from the wave terrain synthesis [6],
where the terrains are obtained by iterating non-linear functions. An orbit is then
traced on the three-dimensional surface to generate a waveform corresponding
to the variations in the elevation of the trajectory over the terrain.

A gestural control inspired from the surface scratching allegory was developed
[7]. The exploration of the wave terrains is carried out here either by performing
linear trajectories (using the direct mode) or looping trajectories (using the
parametric mode) (Fig. 1). In the direct mode, the orbit corresponds to the actual
trajectory drawn by the user on the tablet screen, and the spectral features of the
texture depend directly on the performers hand movements. In the parametric
mode, trajectories are generated via three control parameters: the center of the
trajectory drawn by the pen on the tablet, and its radius and its velocity, both
of which can be modulated via a joystick. This parametric control makes it
possible to overcome the limitations inherent to direct control and to create
pseudo-pitched sonic textures.

2.2 Dynamic Noise Filtering

In the Filtering String instrument, gestures are used to control a virtual slowly
moving string (based on a spring-mass model), which is used to filter a noise [2].
The string shape drives the gains of 32 filters and is displayed on a screen; the
string model controls both the sound and the graphics. The choice of resonant
frequencies and the quality factors (linked to the bandwith) of the filters give
the sound a basic color; the motion of the string adds fluctuations to the sound.
With this technique, it is possible to create a texture with complex but natural
variations, because the physical behaviour of the string is well known. The user
acts on the sound fluctuations indirectly, by interacting with the dynamic string
using a graphic tablet and a multi-touch surface (Fig. 2 left). The position and
pressure of the stylet on the graphic tablet affect the sonic texture by changing
the intrinsic properties of the string (such as its tension, stiffness, and damping).
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Fig. 2. Left: the gestural control of a filtering string. Right: an alternating gesture
linked to breathing textures.

Forces can be applied to the virtual string by exerting pressure on the multi-
touch surface; this changes the strings equilibrium position and thus modifies the
frequency spectrum of the texture. With one hand (using the stylet), the user
configures the dynamic system and thus determines how the string will respond
to the other hand gestures (on the touch surface). The effects of the touch pad
gestures on the sound will depend on the string configuration. For example, at
low stiffness values, the string will move slowly and will not respond to fast move-
ments on the touch pad: in this case, fast gestures are filtered by the dynamic
string. With his hands, the user can impart energy on the string and change the
way it moves; the sonic texture will evolve, although it keeps its identity.

2.3 Breathing Textures

Playing this instrument requires making ecological hand gestures with an al-
ternating pattern, which interact with a breathing sound production process.
Windy textures can be produced by multiplying a band-limited noise signal by
a sine wave (amplitude modulation) [5]. In this way, the band-limited spectrum
is translated by the sine wave frequency value, giving rise to the perceptual
sensation of a definite pitch, while the timbre is noisy but quite smooth. The
control parameters are the perceptual pitch, the noisiness, and the amplitude
of the sound. The metaphor of breathing (inhaling and exhaling) can be used,
for example, by alternating two different sonic textures, which can also evolve
with time. The most natural way of gesturalizing this metaphor is to use biman-
ual gestures, with the two hands moving in opposite directions (Fig. 2 right).
Generally speaking, it can be appropriate to use familiar gestures (which are
sometimes called ecological gestures) mimicking common manual activities and
to link them to these sounds.

3 Textures and Gestures

Sonic textures are specific: they are perceived as sound masses with a rather in-
definite pitch, and the usual attack part is often replaced by a series of transients
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initiated throughout the duration of the sound. Another aspect of sonic textures
links up with the fact that many natural sounds are textures resulting from the
movements of bodies, as well as those of fluids and gases. It is therefore possible
to set up a relationship between the energy of the performers movements and
the evolution of the sound (see an earlier study by Hunt [4]). The best way of
determining which gestures should be used to control a texture is to create a
mental image of the texture before trying to find the most appropriate gestures
for controlling it, rather than looking first for the most efficient artificial links.

4 Conclusion

We have established that it is possible to create new digital instruments using
sonic textures, taking their temporal and spectral specificities into account. We
have concluded from our experiments that the gestures associated with the pro-
duction of sonic textures should correspond to the ecological nature of these
sounds, and that the gestural control is at least as important as the synthesis
algorithm. We intend in the future to investigate the most suitable ecological
gestures for producing ecological sounds, paying due attention to the specifici-
ties of sonic textures. Potential applications such as the musical possibilities of
these instruments or the emotional textural rendering will also be investigated.
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Abstract. We present a collaborative approach towards a detailed understanding 
of the usage of pointing gestures accompanying referring expressions. This effort 
is undertaken in the context of human-machine interaction integrating empirical 
studies, theory of grammar and logics, and simulation techniques. In particular, 
we attempt to measure the precision of the focussed area of a pointing gesture, the 
so-called pointing cone. The pointing cone serves as a central concept in a formal 
account of multi-modal integration at the linguistic speech-gesture interface as 
well as in a computational model of processing multi-modal deictic expressions. 

1   Introduction 

Research in cognitive science shows that deixis, pointing, or demonstration is at the 
heart of reference. On the other side, the robust grounding of reference in situated 
human-machine communication is an open issue until now. In this paper we concen-
trate on pointing gestures in deictic expressions. Following McNeill [14], we distin-
guish between abstract pointings and pointings into concrete domains. Here we focus 
on pointings into concrete domains co-occurring with verbal expressions. 

In our research on human computer interfaces for natural interaction in Virtual Real-
ity (VR) we employ an anthropomorphic agent called Max who is able to produce  
synchronised output involving synthetic speech, facial display and hand gestures [8]. 
Doing so, we focus on scenarios in the construction task domain, where a kit consisting 
of generic parts is used to construct models of mechanical objects and devices. A typical 
setting consists of a human user instructing a VR system represented by Max in aggre-
gating composite objects. Speech and gesture are used to specify tasks and select rele-
vant referents. To improve the communicative abilities of Max, he will be equipped 
with a natural pointing behaviour meeting the requirements of deictic believability [12]. 

A central problem we are faced with is the vagueness of demonstration. The  
question is how to determine the focus of a pointing gesture. To deal with that, we  
establish in the course of a parameterisation of demonstration (Section 2) the concept 
of a pointing cone. For our ongoing empirical studies we developed novel empirical 
methods using tracking technology and VR simulations to collect and evaluate  
analytical data (Section 3). In Section 4 we describe in the context of a theoretically 



 Deixis: How to Determine Demonstrated Objects Using a Pointing Cone 301 

motivated multi-modal linguistic interface how the empirically fixed pointing cone 
can be used to integrate the content of the demonstration, determined via this cone, 
with the content of the verbal expression. The application of the pointing cone con-
cept in computational models for (1) reference resolution and (2) the generation of 
multi-modal referring expressions embedded in our agent Max is outlined in Section 
5. Finally, in Section 6 we discuss the trade-offs of our approach. 

2   The Parameters of Demonstration 

In accordance with Kita [6] we conceive of pointing as a communicative body move-
ment that directs the attention of its addressee to a certain direction, location, or ob-
ject. In the following we concentrate on hand pointing with extended index finger into 
concrete domains. In the context of multimodal deictic expressions pointing or dem-
onstration serves to indicate what the referent of the co-uttered verbal expression 
might be [5]. If we want to consider the multiple dimensions of this kind of deixis 
more systematically, then we must account for various aspects: 

(a) Acts of demonstration have their own structural characteristics. Furthermore, 
co-occurrence of verbal expressions and demonstration is neatly organised, it harmo-
nises with grammatical features. Gestural and verbal information differ in content. 
This results from different production procedures and the alignment of different sen-
sory input channels. The interaction of the differing information can only be described 
via a multi-modal syntax-semantics interface. 

(b) Beside the referential functions of pointing discussed in literature (see e.g. [6] 
and [5]), which draw on the relationship between gesture form and its function, we 
concentrate on two referential functions of pointing into concrete domains depending 
on the spatial relationship between demonstrating hand and referent. If an act of 
pointing uniquely singles out an object, it is said to have object-pointing function; if 
the gesture refer only with additional restricting material it is assigned region-pointing 
function. As shown in earlier studies [13], classifying referential functions needs 
clear-cut criteria for the function distinction. 

(c) Pointing gestures are inherently imprecise, varying with the distance between 
pointing agent and referent. To determine the set of entities delimited by pointing, we 
have to analyse which parameters influence the topology of the spatial area singled 
out by the gesture. As a first approximation we can model this area as a cone repre-
senting the resolution of pointing. Empirical observations indicate that the concept of 
the pointing cone can be divided into two topologically different cones for object- and 
for region-pointing, with the former having a narrower angle than the latter. 

(d) Pointing gestures and speech that constitute a multi-modal utterance are time-
shared. One point of interest, then, is whether there is a constant relationship in time 
between the verbal and the gestural channel. Our investigation of temporal intra-
move relations is motivated by the synchrony rules stated in [14]. Since the so-called 
“stroke” is the meaningful phase of a gesture, from a semantic point of view the syn-
chronisation of the pointing stroke and its affiliated speech matters most. 

(e) With respect to dialogue, a further point of interest is whether pointings affect 
discourse structure. To assess those inter-move relations, the coordination of the  
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gesture phases of the dialogue participants in successive turns has to be analysed. For 
instance, there is a tight coupling of the retraction phase of one agent and the subse-
quent preparation phase of the other suggesting that the retraction phases may con-
tribute to a turn-taking signal. 

To sum up, elaborating a theory of demonstration means at least dealing with the 
following issues: (a) the multi-modal integration of expression content and demon-
stration content, (b) assigning referential functions to pointing, (c) the pointing region 
singled out by a demonstration (“pointing cone”), (d) intra-move synchronisation, and 
(e) inter-move synchronisation.  

3   Empirical Studies on the Pointing Cone 

To address the issues named in the preceding section we started to conduct several 
empirical studies in a setting where two subjects engaged in simple object identifica-
tion games. One subject has the role of the “description-giver”. She has to choose 
freely among the parts of a toy airplane lying on a table equally distributed, the point-
ing domain (Fig. 1a), and to refer to them. The other subject, in the role of the “ob-
ject-identifier”, has to resolve the description-givers reference act and to give feed-
back. Thus, reference has to be negotiated and established using a special kind of 
dialogue game. 

In a first study described in [13] the object identification games were recorded using 
two digital cameras, each capturing a different view of the scene. The annotations of 
the video data comprise speech, gesture phases, and the structure of the dialogue games 
in terms of dialogue moves. This study yields useful results concerning the temporal 
relations of pointing and speech both within a single dialogue move and between the 
moves of the dialogue participants. However, concerning the topology of the pointing 
cone no reliable results could be obtained based only the recorded video data.  

3.1   Tracker-Based Data Recording 

To obtain more exact data concerning the pointing behaviour we use a marker-based 
optical tracking system for the body of the description-giver and data gloves for the 
fine-grained hand postures. The optical tracking system uses eight infrared cameras 
arranged in a cube around the setting to track optical markers each with a unique 3-
dimensional configuration. A software module integrates the gathered information 
providing absolute coordinates and orientations. We track head and back of the de-
scription-giver to serve as reference points. The arms are tracked by two markers 
each, one for the elbow and one for the back of the hand. The hands are tracked using 
CyberGloves® measuring flexion and abduction of the fingers directly. 

The information provided by both tracking systems (Fig. 1a) is integrated in a 
graph-based geometrical model of the user’s posture (Fig. 1b). This is done in real-
time using the VR frameworks Avango [18] and PrOSA [11]. Special recording mod-
ules are attached to the geometric user model to make the recorded data available for 
annotation and stochastic analysis (Fig. 1c).   
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Fig. 1. The description-giver is tracked using optical markers and data gloves (a). The data is 
integrated in a geometrical user model (b) and written to an XML file (c). For simulation the 
data is fed back into the model and visualised using VR techniques (d). The findings are trans-
ferred to improve the speech-gesture processing capabilities of the agent Max (e). 

To test the experimental setting we ran a preliminary study in November 2004 in 
which our primary concerns were the question of data reliability and the development 
of methods for analysing the data. The following section describes a simulative ap-
proach to support raters with visualisations of the collected data. 

3.2   Simulation-Based Data Evaluation 

For the simulation we use VR techniques to feed the gathered tracking data (Fig. 1c) 
back into the geometric user model, forming now the basis of a graphical simulation 
of the experiment (Fig. 1d). This simulation is run in a CAVE-like environment, 
where the human rater is able to walk freely and inspect the gestures from every pos-
sible perspective. While doing so, the simulation can be run back and forth in time 
and thus, e.g., the exact time-spans of the strokes (interval of maximal extension) can 
be collected. To further assist the rater, additional features can be visualised, e.g., the 
pointing beam or its intersection with the table. For the visualisation of the subject we 
use a simple graphical model (Fig. 1d) providing only relevant information.  
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For a location independent annotation we created a desktop-based visualisation 
system where the rater can move a virtual camera into every perspective possible and 
generate videos to facilitate the rating and annotation process when the graphic ma-
chines for the real-time rendering are not available. Using the annotation software, 
these videos can be shown side-a-side in sync with the real videos and provide addi-
tional perspectives, e.g., seeing through the eyes of the instruction-giver. 

3.3   Computation of Pointing Beam and Pointing Cone 

The principal aim of collecting analytical data was to fix the topology of the pointing 
cone and to measure its size. 

A pointing beam is defined by its origin and its direction, the pointing cone in addi-
tion by its apex angle. Therefore, to grasp the spatial constraints of pointing, one has 
to identify the anatomical anchoring of origin and direction in the demonstrating hand 
and to calculate the apex angle of the pointing cone. 

There are four different anatomical parts (the three phalanxes of the index finger 
and the back of the hand) at disposition for anchoring. To discriminate between them 
a hypothetical pointing beam is generated for each of them (Fig. 2a). We will choose 
the anchoring resulting in the least mean orthogonal distance over all successful dem-
onstrations between the hypothetical pointing beam and the respective referent.  

  

Fig. 2. a) Four hypothetical pointing beams anchored in different anatomical parts of the hand; 
b) The angles between the beams to the referent and their next neighbours decrease with the in-
creasing distance to the referent. The dashed arrows represent the beams to the next neighbour. 

Given the anchoring thus obtained, the calculation of the apex angle of the pointing 
cone can be done as follows: For each recorded demonstration the differing angle be-
tween the pointing beam and a beam with the same origin but directed to the nearest 
neighbour has to be computed. The computed angles decrease with the increasing dis-
tance between the demonstrating hand and the referent analogously to the perceived 
decreasing distance between the objects, see Fig. 2b. 

We pursue two strategies for the calculation of the apex angle. In one experimental 
setting the description-givers are allowed to use both, speech and gesture, to indicate 
the referent. Analysing this data, we have to search for the differing angle correlating 
with a shift to more discriminating verbally descriptions. This angle indicates the bor-
derline of the resolution of pointing the description-givers manifests. In the other ex-
perimental setting the description-givers are bounded to gestures only. In this data we 
have to search for the differing angle correlating with the distance where the number 
of failing references exceeds the number of successful references. This angle indicates 
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the borderline in the object density where the object-identifier cannot identify the ref-
erent by pointing alone. 

We assume that these two borderlines will be nearly the same, with the former be-
ing a little bit broader than the latter due to the demonstrating agent’s intention to en-
sure that the addressee is able to resolve the reference act. The corresponding angles 
define the half apex angle of the pointing cone of object-pointing. 

A first assessment of the apex angle of this pointing cone using a similar calcula-
tion based on the video data recorded in our first studies resulted in a half apex angle 
between 6 and 12 degrees, see  [9]. However, these results can be only taken as a 
rough indication. 

To establish the apex angle of the pointing cone of region-pointing we have to in-
vestigate the complex demonstrations including verbal expressions referring to ob-
jects in the distal region. We hope that we can determine the contrast set from which 
the referent is distinguished by analysing the attributes the description-giver uses to 
generate the definite description. The location of the objects in the contrast set gives a 
first impression of the region covered by region-pointing.  

In the next section, we introduce a formal attempt to integrate gestural deixis, in 
particular the pointing stroke, in linguistic descriptions, aiming at a theoretical model 
of deixis in reference [17]. 

4   A Multi-modal Linguistic Interface 

4.1   Complex Demonstrations: Object and Restrictor Demonstration 

Objects originating from pointing plus definite descriptions are called complex dem-
onstrations (“CDs”). The pointing stroke is represented as “ ” indicating the start of 
the stroke in the signal and hence its scope. (1) presents a well-formed CD “ this/that 
yellow bolt” embedded into a directive as against (1’) which we consider as being 
non-well-formed in that the pointing gesture the demonstrative selects for is missing. 

(1) Grasp this/that yellow bolt. (1’) *Grasp this/that yellow bolt. 

A unified account of CDs will opt for a compositional semantics to capture the in-
formation coming from the verbal and the visual channel. CDs are considered as defi-
nite descriptions to which demonstrations add content either by specifying an object 
independently of the definite description or by narrowing down the description’s re-
strictor. We call the first use “object demonstration” and the second one “restrictor 
demonstration”. 

Working on this assumption, demonstrations (a) act like verbal elements in provid-
ing content, (b) interact with verbal elements in a compositional way, (c) may exhibit 
forward or backward dynamics depending on the position of . 

4.2   Interpretation of CDs 

The central problem is how to interpret demonstrations. This question is different 
from the one concerning the ’s function tied to its position in the string. We base the 
discussion on the following examples showing different empirically found  posi-
tions and turn first to “object demonstration”: 
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(2) Grasp  this/that yellow bolt. (3) Grasp this/that yellow bolt. 

(4) Grasp this/that yellow bolt.  (5) Grasp this/that yellow bolt . 

Our initial representation for the speech-act frame of the demonstration-free ex-
pression is 

(6) λN λu(N λv Fdir (grasp(u, v))). 

Here “Fdir” indicates directive illocutionary force; “N” abstracts over the semantics of 
the object-NP/definite description, and “(grasp(u, v))” presents the proposition com-
manded. The  provides new information. If the  is independent from the reference 
of the definite description the only way to express that is by extending (6) with “v = 
y”, where y is a variable introduced by the pointing gesture: 

(7) λN λu λy(N λv Fdir (grasp(u, v)  ∧  (v = y))). 

The idea tied to (7) is that the reference of v and the reference of y must be identi-
cal, regardless of the way in which it is given. Intuitively, the reference of v is given 
by the definite description “ιz(yellowbolt(z))” and the reference of y by . The values 
of both information contents are independent of each other.  

On the other hand, in the restrictor demonstration case the  contributes a new 
property narrowing down the linguistically expressed one. The bracketing we assume 
for (3) in this case is roughly  

(8) [[grasp] [this/that [ yellow bolt]]].  

To capture the restriction function, the format of the description must change. This 
job can be easily done by (9): 

(9) λRλWλK.K(ιz(W(z)  ∧  R(z)))  

Here, K abstracts over the semantics of the directive, W is the predicative delivered 
by the noun, and R is the additional restrictor. The demonstration  in (3) will then be 
represented simply by 

(10) λy(y ∈ D),  

where D intuitively indicates the demonstrated subset of the domain as given by the 
pointing cone. Under functional application this winds up to 

(11) λK.K(ιz(yellowbolt(z) ∧ z ∈ D)). 

Intuitively, (11), the completed description, then indicates “the demonstrated yellow 
bolt” or “the yellow-bolt-within-D”.  

4.3   Multi-modal Meaning as an Interface of Verbal and Gestural Meaning 

Even if we assume compositionality between gestural and verbal content, we must 
admit that the information integrated comes from different channels and that pointing 
is not verbal in itself, i.e. cannot be part of the linguistic grammar’s lexicon. The rep-
resentation problem for compositionality becomes clear, if we consider formula (12) 

(12) λQλN λu N(Q(λy λvFdir (grasp(u, v)  ∧  (v = y)))) λP.P(a)     /*[grasp + ] 
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Evidently, (12) does more than a transitive verb representation for “grasp” should 
do. It has an extra slot Q designed to absorb the additional object, i.e. the demonstra-
tion λP.P(a). We must regard (12) as a formula belonging to a truly multi-modal do-
main, where, however, the channel-specific properties have been abstracted away 
from. This solution only makes sense, however, if we maintain that demonstration 
contributes to the semantics of the definite description used.   

This idea is illustrated in greater detail in Fig. 3. The interface construction shown 
there for (12) presupposes two things: The lexicon for the interface contains expres-
sions where meanings of demonstrations can be plugged into; demonstrations have to 
be represented in the interface as well.  

Fig. 3. Multi-modal interface: meanings from the verbal and the gestural channel integrated via 
translation of  

4.4   Underspecified Syntax and Semantics for Expressions Containing  

The varying position of  can be captured in an underspecification model. The model 
coming nearest our descriptive interests is the Logical Description Grammars  
(LDGs). 

A simplified graphical representation of inputs (1) and (3) is given in Fig. 4. ‘+’ 
and ‘−‘ indicate components which can substitute (‘+’) or need to be substituted (‘−‘). 
Models for the descriptions in Fig. 4 are derived pairing off + and – -nodes in a one-
to-one fashion and identifying the nodes thus paired. Words can come with several 
lexicalisations as can -s. 

The logical description of the input has to provide the linear precedence regulari-
ties for our example “Grasp the yellow bolt!” The description of the input must fix the 
underspecification range of the . It has to come after the imperative verb. The lexi-
cal descriptions for words will also have to contain the type-logical formulas for 
compositional semantics as specified in (7) or (9). 

Based on the syntax given in Fig. 4 and the type-logical formulas for compositional 
semantics specified in (12), we can now provide an interpretation for the speech act 
represented in 

Meaning of pure verbal 
expression as in the lexicon  
λN λu(N λv Fdir (grasp(u, v))) 

Meaning of  pointing (not 
lexicalised) 
λP.P(a) 

Interface of the meaning of the verbal ex-
pression and the meaning of  the  pointing 

λQλN λu N (Q (λy λvFdir (grasp(u, v)  ∧  
(v = y)))) λP.P(a) 
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(13) Fdir (grasp(you, ιz(yellowbolt(z)))  ∧  ιz(yellowbolt(z)) =  a).   

A full interpretation of (13) has to specify its having been performed, its success, 
the commitments it expresses and its satisfaction in the context of utterance i. 

 

Fig. 4. Graphical representation of an input example in LDG 

5   The Pointing Cone in Speech-Gesture Processing 

In this section we discuss the relevance of pointing and pointing cones from the hu-
man-computer interaction perspective. The first part highlights the computational ad-
vantages for reference resolution from the view of speech and gesture understanding. 
In the second part it is demonstrated how the cone can be used on the production side 
to decide whether object- or region-pointing is appropriate for a specific deictic refer-
ring expression and how it influences content selection. 

5.1   Reference Resolution 

In our framework for interaction in VR complex demonstrations (CDs) are interpreted 
by the Reference Resolution Engine (RRE, [15]). Incoming CDs are parsed into sets 
of constraints over the current world model. The constraint satisfaction kernel ac-
cesses several heterogeneous knowledge bases (KB) for symbolic information such as 
type, colour or function and for geometrical information to generate solutions for each 
set of constraints. It uses fuzzy logic for a robust interpretation of symbolic categories 
(e.g. “red”, “left of”).  

A simple set of constraints representing “the yellow bolt” could look like this: 

(inst ?x OBJECT) (pointed-to instruction-giver ?x time-1) 
(has-colour ?x YELLOW time-1) 

(inst ?y TYPE) (is-a ?y BOLT time-2) 

(has-type ?x ?y time-2) 

The RRE solves these constraints and returns a list of possible interpretations or-
dered by likelihood. As our scenes are highly dynamic, special consideration has to be 
given to the time course of the interpretation. A time stamp (time-1, time-2) is at-
tached to each word or gesture and carried through all processing steps to synchronise 
each input with the state of the world at that time. For this each knowledge base main-
tains a history of localised views, one for each arm and head of the participants, over 
the time course of the uttering of the CD. 
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Geometric constraints formulated verbally, e.g., by “to the left of the block” in-
volve a switch from a discrete, symbolic domain to the continuous domain of geome-
try and may therefore be highly ambiguous. This fuzziness is increased even more 
when several geometric constraints are combined, e.g. “to the left and behind the 
block”. In contrast, the pointing cone is a device which has a straight forward repre-
sentation in the geometric domain. Entities pointed to are resolved directly with opti-
mised intersection algorithms. Geometric constraints in the accompanying speech can 
then be computed on a highly restricted subset of the world model, reducing the de-
scribed problems.  

Using the concept of the pointing cone the RRE computes the geometrical context 
of a CD with less cost, and thereby faster, while yielding more precise results. 

5.2   Generation of Deictic Expressions 

While much work concerning the generation of verbal referring expressions has been 
published, work on the generation of multi-modal referring expressions is rare. Most 
approaches use idealised pointing in addition or instead of verbal referring expres-
sions; see e.g. [2], [16], [1] and [12]. Only Krahmer and van der Sluis [7] account for 
vague pointing and distinguish the three types precise, imprecise, and very imprecise 
pointing. 

We propose an approach, for details cf [10], which integrates an evaluation of the 
discriminating power of pointing using the concept of pointing cones with a content 
selection algorithm for definite descriptions founded on the incremental algorithm 
published by [4]. 

Based on our empirical observations, we use the pointing cone to define the focus 
of a planned pointing gesture and distinguish the two referential functions object-
pointing and region-pointing discussed above. As a first step, disambiguation of the 
referent by object-pointing is checked. Doing so, a pointing cone with an apex angle 
of 12 degree anchored in an approximated hand-position and directed to the referent is 
generated. If only the intended referent is found inside this cone, we can refer by con-
ducting object-pointing without an additional description of the object uttered ver-
bally. If object-pointing does not yield a referent, region-pointing is used to focus the 
attention of the addressee to a certain area making the set of objects inside this area 
salient. This set of salient objects is determined by the pointing cone of region-
pointing characterized by a wider apex angle than the cone of object-pointing. In our 
current implementation we chose heuristically the value 25 degrees.  

The objects inside this cone have to be distinguished by additional properties. For 
determining them we use an adapted version of the incremental algorithm of Dale and 
Reiter [4], which exploits domain-specific knowledge about typical properties to 
achieve a determined sequence in property evaluation and to avoid backtracking. This 
approach computes in linear time and the results fit well with the empirical findings. 
In our construction domain typically the property hierarchy, type, colour, relative size 
related to form, is used. The algorithm is adapted as much as relational properties are 
considered.  

The results of the content selection algorithm are represented by a list of attribute-
value-pairs, which are fed into a surface realisation module generating a syntactically 
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correct noun phrase. This noun phrase is combined with a gesture specification and 
both are inserted into a surface description of a complete multi-modal utterance. 
Based on these descriptions, an utterance generator synthesizes continuous speech and 
gesture in a synchronised manner to be uttered by Max [8]. 

6   Conclusion 

The collaborative research presented in this paper scrutinised the issue of pointing in 
complex demonstrations. This issue was approached from interlocked perspectives, 
spanning the complete cycle of speech-gesture processing.  

A genuine effort has been started in collecting multi-resolutional empirical data on 
deictic reference ranging from the high levels of speech acts down to the details of 
finger movements. The analysis of data on complex descriptions led to the notion of 
pointing cone fusing the parameters relevant for the discriminating power of pointing. 
A detailed procedure has been worked out to assess the geometrical properties of the 
pointing cone using tracking technology for measuring the pointing behaviours of 
subjects. Based on the described methods, the results of the studies will ultimately al-
low the fixation of a set of parameters relevant for the computation of the pointing 
cone’s size and form. Furthermore, the sophisticated simulation of the collected data 
enriches the traditional video-based annotation approach; a technique that can easily 
be transferred to other topics of investigation. 

The empirically justified concept of pointing cone enables an integrative approach 
to object- and region-pointing as part of complex demonstrations in concrete dialogue 
situations. In result, complex demonstration, and pointing as part of it, can be mod-
elled in a more natural manner than in previous approaches. In utterance generation 
the pointing cone covers the object(s) to be made salient to the addressee. These ob-
jects constitute the contrast set for content-selection in planning a definite description. 
This idea in turn is taken up by the reference resolution procedure where the area of 
the cone is used to narrow down the search space. Finally, as has been shown with the 
multi-modal linguistic interface, the concept of the pointing cone enters into formal 
definitions of performance, success, commitments and satisfaction of speech acts con-
taining complex demonstrations in an utterance’s context. 
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Abstract. This paper introduces AcouMotion as a new hard-/software
system for combining human body motion, tangible interfaces and sonifi-
cation to a closed-loop human computer interface that allows non-visual
motor control by using sonification (non-speech auditory displays) as
major feedback channel. AcouMotion’s main components are (i) a sen-
sor device for measuring motion parameters (ii) a computer simulation
to represent the dynamical evolution of a model world, and (iii) a soni-
fication engine which generates an auditory representation of objects
and any interactions in the model world. The intended applications of
AcouMotion range from new kinds of sport games that can be played
without visual displays and therefore may be particularly interesting for
people with visual impairment to further applications in data mining,
physiotherapy and cognitive research. The first application of AcouMo-
tion presented in this paper is Blindminton, a sport game similar to
Badminton which is particularly adapted to the abilities of people with
visual impairment. We describe our current system and its state of devel-
opment, and we present first sound examples for interactive sonification
using an early prototype. Finally, we discuss some interesting research
directions based on the fact that AcouMotion binds auditory stimuli and
body motion, and thus can represent a counterpart to the Eye-tracker
device that exploits the binding of visual stimuli and eye-movement in
cognitive research.

1 Introduction

Auditory information plays an important role for directing and coordinating hu-
man activity [1]. Almost every human activity, like closing a door or putting
down a cup on the table, every foot step and almost any physical contact is con-
nected with an acoustic feedback. This provides us with a variety of information
about certain details of the interactants, e.g. their material, stiffness, energy,
texture. In addition to such interaction sounds there are environmental sounds
that give us useful hints on another level: they direct our attention (e.g. to an
approaching car, or a mobile phone), or increase our awareness (think of the
symphony of sounds in a wood from bird songs to the wind in the leaves).

Maybe it is because we interpret and use these informative signals so routinely
and completely effortless that auditory information was not sufficiently appre-
ciated for a long time. This may be one reason why our culture developed in a
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rather visual-centered way. Particularly interaction with computer technology is
still very eye-oriented. Over the last decade, sonification started to offer alterna-
tive, auditory displays which aim at addressing our auditory skills for analyzing
data, particularly high-dimensional data [2]. These techniques now become more
and more interactive, and they enable the user to navigate for instance data un-
der analysis while perceiving in real-time an auditory representation [3].

In search for more ecological (i.e. natural and intuitive) interactions with
auditory data displays, soon other controllers and interfaces than the keyboard
and mouse came into view. When interacting with the environment, we usually
employ our hands and arms, which are both very versatile, and which offer
multi-dimensional controls. A combination of body motion and sound is not
only interesting from the perspective of sonification, e.g. in musical performance
it allows to bind dance and musical performance together.

This paper presents the new system AcouMotion that provides a link between
motor activity and auditory feedback through sonification. AcouMotion is a hard-
/software system that consists of a tangible sensor device, a dynamic model
implemented in a computer simulation and a sonification engine. Interactions
(resp. actions) with the interface object are mapped to manipulations of objects
in the dynamic model. Reactions in the model world are displayed by sonification
as the only feedback modality.

AcouMotion offers various applications, and we give in this paper a sketch
of the possibilities plus a more detailed description of our first implemented
application: using AcouMotion, we develop a new sport game for users with
visual impairment that we call ’Blindminton’, an adapted version of Badminton.
The paper provides an overview of interactive sonification in Sec. 2, followed by
the presentation of the AcouMotion system in Sec. 3, the basis for Blindminton
(see Sec. 4). In the end in Sec. 5, we discuss different research possibilities of
AcouMotion in diverse disciplines, with a focus on applications in Sports Science,
Data Mining and cognitive research.

2 Interactive Sonification

Sonification is the use of non-speech audio for the representation of informa-
tion [2]. Auditory displays, opposed to visual displays are inherently dynamic
so that the information is in principle offered in the flow of time. While we can
navigate visual displays actively by directing the visual focus, it seems that we
are almost incapable of doing the equivalent in sound, apart from perhaps to
focus our auditory attention on certain aspects of a perceived sound (e.g. to
listen to the clarinets in a piece of music). However, this is the point where in-
teraction comes into play. Usually, our environment is silent in the absence of
excitation, and we ourselves cause excitation by interacting with the world. Due
to the invariance of this principle evolution has optimized the human perceptual
apparatus to cope with such multi-modal closed interaction loops. Inclusion of
interaction in sonification is therefore a plausible step to better fit our sensomo-
tor skills to the use of auditory display systems. While interactive sonification
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mainly addresses the issue of investigating data by using interactive navigation
controls, we here suggest an interface that uses also the data measured by a
sensor device as source of sonification, and so provide acoustic motion feedback.

There are various techniques of sonification like Earcons, Auditory Icons, or
the more complex techniques Parameter Mapping and Model-based Sonifica-
tion [2, 4]. Parameter Mapping Sonification is a frequently used strategy to
transform data streams {xi}i to acoustic streams [5]. Usually a mapping func-
tion y = f(x) = σ(Ax) is applied to compute the acoustic attributes vector
y, frequently using a linear transformation A and a nonlinear distortion func-
tion σ. The components of y are sound synthesis parameters like for instance
frequencies, amplitude, modulation indices.

Model-Based Sonification. (MBS) involves a dynamic model to mediate be-
tween the data and the sound [4]. Instead of controlling a sound synthesis engine,
the data determines the setup of a dynamic system whose temporal evolution
is the only process that generates sound (i.e. the sonification). The main ad-
vantages compared to Parameter Mapping are that MBS supports a generic
design, tightly integrates interaction, and automatically generates acoustic re-
lations that are intuitively understood (like the more a system is excited, the
louder it typically sounds).

3 AcouMotion

Applications of the system AcouMotion use a mix of the sonification techniques
mentioned above, e.g. Auditory Icons for displaying discrete events, Parameter
Mapping for analogous data display and, for instance, Model-based Sonification
for more complex data representations through audio.

The core idea behind AcouMotion is to employ sonification to create a new
channel of proprioception allowing to perceptually relate body motion to virtual
objects in a virtual space whose properties can be designed to support a wide
range of different applications. AcouMotion connects three system components
to implement this idea: (i) a tangible sensor device providing motion-related
information, (ii) a computer simulation model formalizing the coupling between
body motion (reflected in the sensory data provided by the tangible device) and
the object dynamics in the virtual space, and (iii) a sonification engine for the
perceptual rendering of the joint dynamics of body and modeled object states.

Body motion sonification in general bears the potential that gestural expres-
sions (e.g. emotions) carry over to rhythmic and dynamic sound properties so
that AcouMotion can be used for categorizing and monitoring gestural behavior.
As bio-feedback system it allows the user to monitor his own activities on the
background of a known ’auditory action template’ and thus to evaluate differ-
ences in gesture execution which is interesting for motor learning and control in
sports, but also for actors or choreography training.

From an application perspective, AcouMotion’s underlying enhancement of
proprioception for monitoring behavior in flexibly designable VR models of en-
vironments can also be used to analyze and support training in sports, to offer
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novel ways of exploration and navigation in interactive data mining, to induce
and stabilize therapeutic movement patterns in physiotherapy, and to offer new
avenues for investigating cognitive processes.

In the following, we will illustrate only one research direction of our approach
with a specific application example taken from the domain of sport games (fur-
ther applications are pointed out in Sec. 5). In this example, the tangible con-
troller will be a small handheld device, moved in a racket-like manner providing
sensor signals allowing to drive a “virtual racket” in the model space. The model
space will additionally contain a virtual game arena consisting of a floor, a de-
marcated field, a ball and reflecting walls. The sonification engine will create
a real-time soundscape that allows to infer the distance, the position and the
velocity of the virtual ball relative to the racket. Thereby, it will provide the
player with non-visual proprioception how to perform a successful hit back of
the ball to continue the game.

In this example the body motion is functional in the sense that only the
”physical” contact of a virtual ball and virtual racket are relevant for playing
the game. It is not determined how the player achieves this goal. Gestures, as
a more indirect means of communication may be implemented in further game
applications as AcouMotion is developed as a very general platform (e.g. a game
”Gesture Imitation” where one blindfolded person challenges the opponent by
performing a body gesture which results in a sonification, followed by the other
player who may have 3 trials to reproduce the body gesture purely by trying to
reproduce the sound).

3.1 Sensor Devices

In AcouMotion a variety of sensor devices can be used. They all have in common
that they deliver real-time data about the user’s physical activity. For a game
like Blindminton, the position of one hand in high spatio-temporal resolution
would be required. For other applications of AcouMotion, one might need only
accelerations, or whole body movements, or force measurements.

As a general framework, we propose a tangible sensor device for AcouMotion.
Users are familiar and highly skilled in using tools from everyday experience or
many sport games, while purely gestural interactions are rare1. As a professional
solution for our sensor device we use the Lukotronic motion capture system2,
which is able to track the 3D-position of a set of markers with a frame rate
of 1200 Hz. The Lukotronic system consists of a set of fixed IR-cameras and
flashing IR-markers. Using four markers mounted on a tangible device like a
small racket allows us measuring the full 6D position/orientation of the racket.
Furthermore, we can compute the velocities and accelerations at high accuracy
from successive frames.

1 However, the Theremin (see www.thereminworld.com/learn.asp) is a music instru-
ment played via gestural interaction alone, and there are many motion forms like
Tai-Chi or dance. Thus even cameras are suited sensors to be used in AcouMotion.

2 http://www.lukotronik.com
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Fig. 1. Webcam-based position estimates. The figure shows a player using the interface
ball, and the webcam image including analysis results.

In addition, we search for a less expensive solution for AcouMotion. Our first
experimental prototype is a haptic controller equipped with two 2D accelerom-
eters and 5 force sensitive resistors to provide interactions like movement, rota-
tion, shaking, squeezing, etc [6]. The interface is shown in Figure 1. A cable-free
version using Bluetooth will free us from actual mobility limits and is a next
target for development.

The frame rate is a crucial parameter in real-time interactions, and we cur-
rently obtain and process sensor data at 100 Hz, which is sufficiently high to cre-
ate the illusion of latency-free control. However, the integration of accelerometer
data to spatial coordinates is difficult and we require an independent means to
eliminate drifts. Currently we solve this by a computer-vision based approach as
shown in Fig. 1. By using a simple webcam, we are able to obtain 2D-coordinates
of the ball at 25 Hz, and using a fixed sized visual marker, we can compute a
rough estimate of the distance. We plan to fuse these estimates with predictions
from the sensor data integration. Although the prototype of the haptic controller
suffers from relatively low frame rates at this time, it is a valuable complement
for the Lukotronic system in the Blindminton application. In combining the
Lukotronic system and our haptic control device we are able to measure the
position of the player’s hand with high spatio-temporal solution and give also a
feedback for crucial game events, in particular the hit of the ball. Using such ad-
ditional haptic information augments the feeling of having control over the game.
This is an essential condition for motivating flow-experiences during the game.
Integrating haptic information is therefore believed as an important condition
for people’s motivation playing the game.

3.2 Computer Simulation

A dynamic model is the basis for representing processes and interactions in
AcouMotion. The model represents the internal state of the AcouMotion sys-
tem, and evolves according to its own “physical laws”. In applications like the
sport game like Blindminton, we suggest to use laws we are familiar with from
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everyday experience (e.g. the ball flies through a 3-dimensional space influenced
by gravitational force and aerodynamic resistance)3.

To start we use a physical model in a 3D model space with a limited number of
objects represented by their coordinates, velocities and orientations. For instance
in a one-player version of Blindminton, the objects are the racket, the ball, and
a set of planes and walls to model the game field and floor. In our current
prototype, the ball is described by a sphere or radius r, mass m and its state
vector (xb[n],vb[n]). In later versions it will also include the property of angular
momentum. In a similar way, the racket is modeled by a cuboid. It is special in
the way that its coordinate and orientation is strictly determined by the external
sensor data. In contrast, the ball is free and only bound to follow the motion
equations

mẍ + Rẋ + ∇xV (x) = 0 with V (x) = gẑ (1)

The state of the model is updated at a constant rate ΔT by using numerical
integration. For instance, the ball is updated using

x[n + 1] = x[n] + v[n + 1]ΔT

v[n + 1] = αv[n] + a[n + 1]ΔT

a[n + 1] = − 1
m

∇V (x[n])

In addition to these update steps, the simulation needs to check at every time
step whether there are interactions with objects (e.g. the ball and the virtual
racket), and respond with update in this situation, like an elastic impact. Such
event-based information is highly relevant for the auditory display.

While real-world settings have to operate with the existing physical laws, the
computer simulation enables us to control any circumstances in principal, for
instance the viscosity of the air. This might cause a retardation of the ball due
to increasing aerodynamic resistance, etc. Thus, we can control the complexity
and difficulty of the task in detail to create a challenging game.

3.3 Sonification Engine

Sonification bridges the gap between the only virtually existing model state
and the auditory perception of the user. The sonification shall provide ample
information to enable the user to operate whatever interactive activity is needed
in the respective application. This could be the successful hitting of the ball, but
also navigation in complex data spaces in more abstract settings.

Sound offers extensive possibilities to incorporate detailed information about
ongoing processes. The sonification engine itself is an algorithm which receives
as input the state of the model, and creates as output either the sound directly
or control messages to a synthesis engine.

3 However, this falls in the hand of an application designer. For instance this model can
be a sonification model so that interactions may be used to analyze high-dimensional
data as described in Sec 5.
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Practically we use Supercollider [7], an object oriented language similar to
SmallTalk for the implementation of the model, and the Supercollider sound
server for the computation of audio data. The sonification engine can be ex-
changed easily by other implementations in C++ or our graphical simulation
environment Neo [8] since communication to the sound server is achieved via
Open Sound Control (OSC).

Sensor device, computer simulation model and sonification engine are con-
nected via OSC interfaces, allowing easy exchange of sensors, or distribution on
different computers.

Basis elements of our auditory display are (i) continuous sound streams which
convey information by the change of acoustic attribute (an example is a pulsed
sound whose pulse rate represents distance to the player). (ii) discrete sound
events, which are used to communicate discrete event (e.g. physical contact in-
teractions in the model) (iii) ambient elements like sound effects, that influence
the overall display.

4 Blindminton – A Sonification-Based Sport Game for
Adapted Physical Activity

In this section we focus on our first application of AcouMotion, a new sport game
called Blindminton. Blindminton is providing a test case for several applications
focusing on the excellent auditory perception skills which are highly adapted for
people with visual impairment due to their enhanced everyday use. It is an appli-
cation of the transdisciplinary method of interactive sonification in the interdisci-
plinary research field of Adapted Physical Activity (APA), a relatively new focus
within physical education and kinesiology for people with deficiencies, disabil-
ities, handicaps or special needs [9]. The sonification-based game Blindminton
will be motivated from a brief analysis of sport games in general (Sec. 4.1), and
games for people with visual impairment in particular (Sec. 4.2). We illustrate
the progression of our started research project and then show the current status
of the implementation (Sec. 4.3).

4.1 Perception and Action in Sport Games

People playing sport games have to deal with great demands on multi-modal
perception for action control due to the extreme spatio-temporal constraints in
the complex and dynamic environment of sport games. It is therefore a very im-
portant condition for top-performance to use effective strategies for information
perception. As visual information is considered to be the most important infor-
mation for action control in sport games, one of the major interests in cognitive
research on anticipation and decision making in sport games is to analyze visual
search strategies [10].

Despite the dominance of visual information there can be no doubt that other
types of information are also important for top performance in sport games
and you need a holistic, multi-modal perception for optimal action control. For
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instance, you cannot reach top performance in table tennis without receiving
auditory information about the ball bouncing on the table.

The human multi-modal perception system is adaptive to the environmental
demands. On the one hand, this fact is used in training concepts closing one
information channel (e.g. ‘Close your eyes!’) to train other perception systems
(‘try to control the ball just with the tactile information of your feet!’). On the
other hand, people with visual impairment are forced to adapt their informa-
tion processing due to their missing visual information in everyday life. This
motivates us to search for sport games reducing the requirements of visual infor-
mation and increasing the importance from other information like sound. Thus
we take a look for already existing games for people with visual impairment.

4.2 Sport Games for People with Visual Impairment

Sport games offer important experiences in body movement and body motion
and are of crucial importance for the psychosocial development of people with
visual impairment. As visual information is the leading afferent information for
action control in sport games it is particularly difficult for these people to take
part in sport games. But since these people also desire to get access to sport
games, it is one of the most important tasks in the research field of APA to
expand the boundaries of ordinary sport games and search for new opportunities
or enabling techniques to facilitate their participation.

Until now, there are only very few sport games for people with visual impair-
ment. One of them is the so called ball game Goalball which is very significant:
Goalball was created especially for blind people and the only paralympic sport
game for people with visual impairment for many years4. It was accompanied
by the game ‘football-5-a-side’ in the recent paralympic games in Athens 2004.
These sport games show impressively the adapted perceptual skills of sportsmen
using non-visual information and proof the possibility to play sport (and even
ball) games without any visual information.

Searching for further non-visual sport games, we use insights from three areas:
Firstly, existing sport games like goalball are analyzed and their basic principles
like the sounding ball are used to create new games. Secondly, we regard success-
ful applications of interactive sonification in auditory computer games. Games
like ‘Super Tennis’ can be played against the computer just using auditory infor-
mation and are very popular, in particular for people with visual impairment5.
Finally, we take virtual simulations of sport games into consideration. Games
like ‘Virtual Table Tennis’6 are games consisting of virtual simulation. They can
be played against the computer or via internet against another opponent within
VR using a virtual ball.

We break new ground in using the method of interactive sonification [4] to
present auditory information as the leading information for action regulation in

4 see http://www.ibsa.es/eng/deportes/goalball/presentacion.htm
5 see http://www.audiogames.com
6 see http://www.vtt.fi/multimedia/camball/camball.html
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sport games. This enables us to present auditory information in a more system-
atic way as in the existing sport games using natural sounds like the ringing
of a bell inside the goalball. Auditory computer games already use interactive
sonification and can be seen as challenging games, predestined for motivating
flow experiences[11]. But from the perspective of APA computer games do not
offer movement experiences promoting motor development like sport games.

AcouMotion integrates interactive sonification, movement experiences and
virtual game simulations and goes beyond hitherto existing systems. The sys-
tem provides a technical basis offering new auditory sport games that can be
played just by using non-visual sonification-based information with real motor
activity. In the following we present the game concept of our first application
Blindminton.

4.3 Blindminton - The Game Concept

The lack of adapted sport games for people with visual impairment makes it nec-
essary to provide these people with ample information enabling them to conduct
a challenging sport game. We show how to realize this by using AcouMotion.
To attack the ultimate challenge of a multi-player game for blind people, we
decompose the problem in smaller steps. This allows to treat smaller problems,
and to develop a series of highly promising research platforms.

Basically, Blindminton is a game where a (here virtual) ball is being hit by a
racket until it comes to a rest. If a player places the ball into ‘out’, or fails to
hit back the ball properly, the opponent gets a point. The winner of the game is
the player who first reaches 15 points.

AcouMotion Sensor Device

virtual path

virtual Ball

virtual wall

Multichannel Audio Setup

Computer for
Sonification
Sensor data processing
Game Simulation

v(t)

v(t+1)

v(t+2)

(or: headphones)

-1

0

1

-3
-2

-1
0

0

1

2

Fig. 2. Blindminton game setting. The plot shows a simulated ball trajectory with 4
impact events.

One-Player Blindminton. We start with a limited version of Blindminton
where the opponent is replaced by a fixed wall, so that the task is being turned
into the game of keeping the (virtual) ball in the game as long as possible. In this
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game we can increase the score for every wall contact, and have the opportunity
to make the score dependent upon the ball speed at the wall. This introduces an
element which engages the player to increase his activity to obtain better scores.
Alternatively, other motivational elements can be introduced, like the task to
touch every tile of the virtual wall. What tiles remain to be touched can be
communicated by the wall contact sonification which delivers the information at
what distance and direction the nearest unhit tile is located. The score would
then be reciprocal to the time needed to hit a tile.

All components of AcouMotion are required for implementing this game. In
particular the AcouMotion sensor device is able to deliver position and orienta-
tion of the racket. Orientation is crucial since the ball reflects from the racket
(via input angle=output angle) and this is an essential control to conduct the
game.

Two-player Blindminton. Is an extension towards team plays. A second mo-
tion sensor device is needed. With some extensions, the rules of classical Bad-
minton can be taken. The sonification engine has to be extended so that the
opponents activity (e.g. position) is displayed to each player. Communicative
aspects must be respected (like that the sonification may not overly interfere
with vocal communication between players). This is the intermediate step to-
wards team games like a ’3 vs. 3’ Blindminton (played like Volleyball).

4.4 Auditory Information Design

In games like Blindminton there are different types of information-carrying vari-
ables, like

Continuous Variables: Ball position, ball relative position, distance to racket,
ball velocity, ball angular momentum, racket position, racket orientation,

Discrete Events: Ball/racket contact, ball/floor contact (in/out field),
ball/wall contact, player (resp. sensor) leaves field borders,

Pseudo-discrete Events: Using a division of space into zones: ball crosses a
zone plane. Pseudo-discrete events create an auditory gestalt, for instance
as a pulsed event chain so that information is conveyed not only through the
event itself but its relation to other events.

The auditory display aims at delivering much more information in sound than
obtainable in real-world interactions. For instance, a flying ball may contribute
a level-modulated sound pattern with pulse rate increasing when the ball ap-
proaches the racket and ’effet’ can become audible as well. A video of our current
Blindminton game is available on our website7.

5 Discussion: Towards Acoustic Body-Tracking

The paper has introduced the AcouMotion system and Blindminton as a first
application. AcouMotion opens a range of applications and research directions.
7 see http://www.techfak.uni-bielefeld.de/∼thermann/projects/index.html
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In Sports Science, AcouMotion plays a role to investigate for instance mo-
tivational aspects. Which informational factors (display richness, information
latency, difficulty) make games motivating? Here the obtained information can
be controlled via the sonification engine in full accuracy. Connected to this is
the analysis of motor laerning and training processes: How do humans learn
coordinated movements, and which factors can efficiently contribute to acceler-
ate learning processes? For instance, it is argued that beginners learn faster if
their task is simplified (e.g. by a larger racket). In Blindminton, we can not only
control the virtual racket size dependent of the performance level, we can also
control such variables continuously during the learning progress within the activ-
ity. Further on, AcouMotion has recently been used for testing players’ reaction
on spatially resolved sound cues. From a pilot study ([12]) we are optimistic to
develop a useful performance test for paralympic game Goalball using AcouMo-
tion. Flow experience is another important phenomenon observed in sports, but
also in musical performance, etc [11]. It describes the dissolving of the person in
his activity so that the mental focus becomes free to concentrate on higher lev-
els (e.g. in playing music: from technical control to performance and emotional
expression). The factors that potentially contribute to the emergence of flow can
easily be examined with AcouMotion.

In the discipline of Data Mining, the challenging task is to understand struc-
tures in high-dimensional data. Interactive techniques can support the insight
into data. Exploration and navigation tasks heavily rely on the perception-driven
refinement of activity. Thus, AcouMotion may be applied to decrease the gap
between abstract high-dimensional data spaces and human’s natural interfaces,
e.g. by using multi-modal exploration models that involve sonification. An im-
pact on the degree of immersion, performance, reaction time, or a reduce of
fatigue may be positive outcomes of applying AcouMotion in this domain.

In Physiotherapy we see the potential that AcouMotion can be a useful
tool to induce therapeutically valuable movement patterns. To give only one
example, consider a game where the tangible sensor device is used to catch
virtual butterflies around your body. An additional sensor array attached to the
user’s back records motion parameters and directs the butterflies so that you
activate your back in a therapeutically ergonomic way.

Cognitive Research. We believe that AcouMotion offers an interesting analogy
to eye tracking: while the measurement of eye movements in response to visual
events as a major ‘window’ into cognitive processes has become a widely estab-
lished methodology, the analogous measurement of body movements in response
to auditory information has so far been much less exploited. AcouMotion can
fill this gap by providing a sound basis for studying this complementary link be-
tween modalities, complementing the dyadic eye-mind hypothesis of eye tracking
research[13] with a triadic ear-mind-bodymotion hypothesis, stating that body
motion responses to specific sound patterns can reveal information about the
focus of ongoing cognitive processes. In this way, AcouMotion helps to answer
research questions like: How are acoustic information from interactions processed
and used to refine motor activity? How are emotional cues processed? Sound is
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an ideal carrier for emotional information, and emotion influences body gestures.
How do these systems relate to each other?

In conclusion, we recommend AcouMotion as a new auspicious platform to en-
hance human-computer interaction and investigate the relation between human
information processing and human action.
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Abstract. This article aims to present a constrained gestural interface
which allows to easily experiment spatial geometry for educational pur-
poses. It consists in a bi-manual gestural language specifically designed
in order to simplify user’s interaction in geometric constructions. As
the inherent complexity of geometry in 3 dimensions is combined with
the cognitive difficulty of interacting with virtual environments, we pro-
pose to constrain the interaction: hand postures constrain the object
type for designation and selection; objects already selected constrain the
construction process; the degrees of freedom representation constrain
the manipulation of constructed figures; and the deformable ray-casting
method constrain the navigation.

1 Introduction

When a geometric statement is given, it is not easy to find a construction satisfy-
ing the imposed properties, especially in three dimensions. A lot of 2D geometric
software products [1, 2, 3, 4, 5] have been designed for the CAE (Computer-Aided
Education) domain. They all define a geometry framework in which classical
tools, like ruler and compass, are translated into a computer representation, im-
proving capabilities of the pair pen/paper. Indeed, since a user is able to draw
some points and lines on a computer screen, it is just a stone’s throw from mod-
ifying the figure by direct manipulation with keeping its properties verified. It
has been done by Cabri-géomètre [6, 7], one of the most famous 2D geometric
constructions application, which has defined the term of Dynamic Geometry.

However, the third dimension has been poorly tackled. Some software like
Cabri 3D [8], Geospacw [9], or Calques 3D [10, 11] can be picked out. But, their
repercussions into 3D geometry teaching have not been conclusive. In practice,
3D geometry visualisation and manipulation with 2D tools are not enough intu-
itive and efficient. Since the main problem of traditional space geometry appli-
cations is the gap between an object concept and its representation, the use of a
virtual reality environment enhances 3D geometric constructions comprehension
as the user is able to intuitively reach the implied geometric entities and interact
with them.
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In an earlier paper [12], we have described our 3D geometric constructions
prototype in a virtual environment, called Coyote-géomètre, which is a veiled
reference to the famous Cabri-géomètre [6]. Our approach is based on the use of
gloves to recognize gestures and postures. It is the main difference with previous
studies like Construct3D by Hannes Kaufmann [13]. Applied in another domain,
our approach is closer to the one of Zeleznik et al. [14] who proposed SKETCH,
a gesture-based interface to "approximate" 3D polyhedral modelling.

As said above, the main goal pursued with the conception of Coyote consists
in providing a better perception and comprehension of space geometry. But, our
experience have proved that it remains inefficient to let too much abilities to the
end user since the inherent complexity of geometry in 3 dimensions requires him
to be guided in the construction process. Gesture interaction is a very intuitive
and natural approach, although its many degrees of freedom (DOFs) are not
easy to be apprehended. These two statements imply to find out solutions to
constrain the interaction. We think that the use of a constrained gesture inter-
action would just decrease the complexity induced by the combination of VR
and 3D geometrical constructions.

In section 2, an example of construction is presented. The section 3 shows
how to create and select objects in a geometric scene by gestural interaction. In
section 4, bi-manual construction is exposed. In section 5, the constrained ma-
nipulation of the resulting figure is studied. Finally, in section 6, the constrained
navigation using the deformable ray-casting method is described.

2 Example of Construction

For example, let us consider the geometric universe composed by 6 types of ob-
jects : points, segments, lines, planes, circles, and spheres, and by 30 construction
primitives, like construct a line passing by two points, etc. Although there is only
few types of objects, it is sufficient for a relatively large choice of primitives and
for an interesting use in CAE. Let us consider the following statement :
The intersection between a cube and a plane is at more a hexagon,
as there is no predefined object "cube" in our universe, we have to construct a
cube.

A corresponding textual plan of construction of a wire cube could be the
following (there is generally more than one plan of construction corresponding
to the solution of a problem) :

1. Let p1 be a point
2. Let d1 be a line passing through p1
3. Let d2 be a perpendicular line to d1 passing through p1
4. Construct π as the plan passing through d1 and d2
5. Let p2 be a point of d1
6. Construct σ the sphere with center p1 passing through p2
7. Let p3 be one of the intersections of d2 and σ
8. Let d3 be a perpendicular line to the plane π passing through p1
9. Let p4 be one of the intersection of d3 and σ
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Fig. 1. Intersection of a cube and a plane

10. Construct the parallel line d4 to d1 passing through p3
11. Construct the parallel line d5 to d2 passing through p2
12. Let p5 the intersection of d4 and d5
13. Construct the parallel line d6 to d1 passing through p4
14. Construct the parallel line d7 to d3 passing through p2
15. Let p6 the intersection of d6 and d7
16. Construct the parallel line d8 to d4 passing through p3
17. Construct the parallel line d9 to d2 passing through p2
18. Let p7 the intersection of d8 and d9
19. Let d10 be a perpendicular line to d6 passing through p6
20. Let d11 be a perpendicular line to d4 passing through p5
21. Let p8 be the intersection of d10 and d11

Then, a free plane is created and the intersections between the plane and
the cube are computed while manipulating the plane. This example shows that
some objects are free like p1, others are semi-defined like p2, and other ones
are totally defined like p5. So selection, creation and manipulation are different
for each kind of objects. It also shows that a geometrical construction could be
decomposed in two steps: the choice of the construction to be carried out, and
the selection of implied objects. Finally, a pedagogical navigation is necessary to
really see how to obtain a hexagon like in fig. 1.

This example will be used as a reference in all this article.

3 Bi-manual Creation and Selection

Achieving dynamic 3D constructions is not very simple. A stereoscopic display
system, named Workbench could help the user in this task. A set of infrared
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(a) Point gesture (b) Segment Gesture (c) Plane Gesture

(d) Circle gesture (e) Line gesture (f) Sphere gesture

Fig. 2. Visual example of a Gesture Dictionary

cameras is used to follow his both head and hands movements by tracking posi-
tions and orientations. By wearing a pair of data gloves with the infrared trackers
fixed on the back side of the wrist, user is able to do gestures and perform a
construction.

Starting a new construction, the Workbench environment is empty. The user
can freely add geometric objects, this is the creation step. Then, he can designate
them for manipulation : the selection step and the manipulation one. Switching
between creation, selection and manipulation modes is automatic. On the other
hand, before navigating, the user has to explicitly change the mode.

The creation mode starts by pointing an empty place in the scene with the
dominant hand, and closing the non-dominant hand at the same time. A new
object is added and displayed in the virtual environment, depending on the user’s
dominant hand shape (fig. 2).

3.1 Creation

There are too many different objects in geometric constructions and their com-
binations are too numerous to have a single metaphor to interact with. When
several techniques are used in the same time, each should visually correspond to
a precise object, and act as an icon in mind. A meaning to interaction is provided
by creating a vocable with our gestures set. Each posture has a visual significa-
tion : for example, a open hand is used to add a plane in the scene (fig. 3(b)).
It is a so-called shape-based hand gestures language: the gesture’s semantic is
bounded to the commands’ semantic and it acts like a semantic shortcut. To
make the association, a gesture dictionary is defined (fig. 2). This is a list of
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(a) Point designation (b) Point selection

Fig. 3. Parallel selection

gestures which represent the vocabulary for the application and its associated
object.

Due to a small number of objects, we chose to create a dictionary with one
gesture by geometric object. Each has been chosen to be far enough from the
others, some have been given up because they were too ambiguous. Using Data-
Glove from 5DT, measurements of joint angles and the spatial orientation of the
hand can be determined. We used those values to recognise gestures in combi-
nation with 2 neural networks, one by hand. The first phase is to initialize the
system and familiarize the subject with the system. Then, networks are trained
by collecting data from user’s gestures, which provide a profile by subject. The
system records one profile by user and all profiles are used to make a default
network for a new subject.

The fist gesture is used for adding/selecting a point (fig. 3(a)). The gesture
associated with a segment is an index finger pointed out (fig. 3(b)). The line is
represented by the index and the middle finger pointed out (fig. 3(e)). The hand
open correspond to a plane (fig. 3(c)). The crab claw (the thumb and the index
make a circle) represents of course the circle (fig. 3(d)). And if the middle finger
is in our crab claw, it is the sphere (fig. 3(f)). Since there are few objects to be
considered, the choice to make this dictionary is correct. But, if the user wants
to add other objects - like a conic or a face - or macros-objects - like a cube
composed of points, segments and faces -, a default designation representation
have to be considered. The point gesture with the thumb down is proposed to
be this representation.

3.2 Selection

Generally, selection is decomposed into two phases. The designation is the first
phase, during which user points an object, non-dominant palm open. Then, in
the second phase, he validates the selection by closing that hand (fist gesture).
The application uses layers both to decompose the construction process, by hid-
ing intermediate parts of construction for a better visibility of the solution, and
group geometric objects by type to provide a new designation mechanism. On
the one hand, progressive visualisation of the layers allows a step by step expla-
nation of the construction to students. By providing a layer by type of object,
the selection becomes non-ambiguous and parasitic objects are eliminated from
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Fig. 4. Bounding Box

the picking for the selection. In this scheme, there is a correspondence between
a gesture, a type of object and the current layer. On the other hand, multiple
selection is possible directly selecting a layer without selecting objects. Finally,
layers are gathered in a root layer, which provides an equivalent to the control-a
hot key in a WIMP environment.

Multiple selection could use a bi-manual interaction. A volume can be selected
by designing a bounding box (fig. 4). Every object which falls inside the bounding
box becomes selected.

Designation by our gesture language have been described in this section. In
next sections, the answer to the question "how to use this language to construct,
manipulate and navigate ?" is provided.

4 Bi-manual Construction

In our prototype, the two steps of a construction defined in section 1 (selecting
objects, then selecting a primitive of construction), can be done in any order: if
a construction is chosen, the system asks for awaited objects, and if objects are
selected, available constructions are restricted to those objects.

We noticed that those tasks are often put into parallel. Thus, a parallel use
of hands to manipulate in the same time the geometric scene and the menu
of constructions is proposed. While the dominant hand selects objects in the
scene, the non dominant interacts with a contextual dynamic menu (fig. 5).
It allows the user to work efficiently without considering all the possibilities
of construction but only those he can effectively make. It consists in a semi-
transparent menu and entries are selected via the non-dominant hand. The menu
appears after a short delay (less than one second), allowing blind selection. For
example, the user selects two points in space with his dominant hand. After one
second, the menu appears and he selects an item (e.g. build the line passing by
these points), by pushing his non-dominant hand through the menu. Moreover, it
reduces the visual clutter of old large menus, especially when they are unrolled in
hierarchical versions.

The non-dominant hand acts in the same time as a trigger in the menu, and
as a trigger in space (geometric object selection).
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Fig. 5. Dynamic menu at the beginning of the construction

Imagine that the user selects a point and a line during a construction. The
system can’t know what the user want to do: build a parallel or a perpendicular.
The construction is disambiguated by choosing in the dynamic menu the parallel
icon with the non-dominant hand.

Remark: The traditional method of construction is to ask the system a possible
list of construction primitives when a precise object is required. It can be done
through a default menu.

5 Bi-manual Manipulation

With six degrees of freedom (3D position and orientation) manipulations are
often very difficult, even if there are visual cues.

Bi-manual manipulation is a variant of direct manipulation that involves using
both hands for a single task. According to Guiard’s kinematic chain theory [15],
the non-dominant hand provides a reference to user for improving his geometric
construction.

The manipulation process can act on two kinds of objects. First, those directly
created by the user (e.g. a point created freely in space). Second, those resulting
from the construction process (e.g. a line created from two points). In the two
next subsections, we propose two ways to help the user during manipulation and
positioning.

5.1 Regular Magnetic Grid

The regular magnetic grid, illustrated in fig. 6, allows to place points, lines or
planes with accuracy. Actually, each geometric object is snap-dragged on a node
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Fig. 6. Regular Magnetic Grid

of the mesh. Space between nodes can be adjusted via the non-dominant hand,
making the grid more or less accurate (that hand has to catch one axis and bring
it closer, or move away, from the center of the grid). With our Regular Magnetic
Grid, problems of precision and depth have drastically decreased.

In our example (the intersection between a cube and a plane), we proposed
to place a free point at first. This has to be done using the Regular Magnetic
Grid. The plane could also be oriented by isothetic positioning.

5.2 Local Augmented Frame

We propose to add visual references to manipulate virtual objects. Several visual
references are located on a Local Augmented Frame, and are called handlers (for
scaling, rotating and translating) as depicted on picture 7.

That frame is materialized when an object is manipulated, by being
centred on it. Different handlers corresponding to each kind of possible mod-
ification are represented in this visual cue. We distinguish displacements (ro-
tations and translations) and scales. Cones are used to represent translational
DOFs. Spheres are associated to rotational DOFs. Scaling by an axis is repre-
sented by a cube on it. Three small triangles are used to make translations in a
plane.

In our example we would like to experiment the intersection between a plane
and a cube. That plane could be moved in one direction (the normal direc-
tion) and has 2 RDOFs. So, moving a small cube provided with the Local Aug-
mented Frame allows its translational movements, and rotations via the small
spheres.
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Fig. 7. Plane with local augmented frame

6 Constrained Navigation

Navigation in a geometrical scene is not very intuitive. Navigation is strongly
correlated with physical displacements, but those have to be proscribed in the
environments we are working for, since we have only a very limited space for
walking. Moreover, basic components are not easily distinguishable, and the
representation of their names considerably obstructs visual space.

The navigation is based both on hands movements and on the deformable
ray-cast metaphor [16]. Our deformable ray-casting interaction technique allows
traveling inside a virtual environment. The user simply draws a 3D path with
the free form ray, and follows it by being attached to the curve. It provides a
mean for planned navigation. We can see on fig. 8 a two-hands manipulation of
the deformable ray. There are three different modes to use the ray: staying in
place, moving forward (growing) and moving backward (shrinking). First, there
is a dead zone when both hands are closer than a predefined distance (e.g. 0.1
meters). Second, the normal mode is enabled when both hands are further than
the previous distance, and the non-dominant hand is opened. Third, when this
last is closed, the ray shrinks in length. We need to precise that the deformable
ray can’t twist: it is just curved in space.

The dominant hand controls a 6 DOFs camera without zoom (i.e. it provides
to the user a second point of view) which is fixed to the end of the ray. User

Fig. 8. Two hands manipulation of the deformable ray
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is able to freely direct it in any direction by turning his wrist. By default, the
camera is pointing forward of the fingers and attached to the 3D curve. The user
can only change the rotation of the camera, and its instantaneous velocity on
the curve is provided with the same technic than during the creation of the 3D
path. Of course, it’s not possible to rotate more than 180 due to the physical
limitation of the front arm. On your previous example, a teacher could record a
precise path to easily show how many segments (i.e. what kind of polyhedron)
are generated by a plane/cube intersection. After, he will be able to play it again
to his students during a learning session.

7 Conclusion and Future Works

A constrained gesture interaction has been presented for the domain of 3D geo-
metric constructions. Its four main functionalities are :

– the possibility to constrain designation and selection to one type of object;
– a construction process constrained by previous selections;
– the constriction of manipulation by representing degrees of liberty by han-

dlers;
– the use of the deformable ray-cast metaphor to constrain the exploration of

a figure.

Currently, we are working in a relatively large environment : an Holobench com-
posed by two screens, but, we project to port our application to standard PC
equipment with low cost data gloves that could be used in classrooms. Learning
space geometry in a intuitive way is the first step toward geometrical modeling
in CAD (Computer-Aided Design) and in particular in the sketching of objects.

As accurate values are also needed to construct useful objects, the 3D con-
straints definition in the GCSP (Geometric Constraint Solving Problems), could
be easier with such an interaction and it is one of the principal motivation with
regard to the continuation of our research.
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Abstract. This paper presents an interactive multi-modal system for
real-time multi-parametric gestural control of audio processing applica-
tions. We claim that this can ease the use / control of different tasks and
for this we present the following as a demonstration: (1) A musical appli-
cation, i.e. the multi-parametric control of digital audio effects, and (2) a
scientific application, i.e. the interactive navigation of audifications. In the
first application we discuss the use of PCA-based control axes and clus-
tering to obtain dimensionality reduced control variables. In the second
application we show how the tightly closed human-computer loop actively
supports the detection and discovery of features in data under analysis.

1 Introduction

In the domain of audio processing systems, the usually high dimensional data
space of the control task cannot be easily managed in real-time with the tradi-
tional human-computer interfaces used for office work tasks, e.g. the drop-down-
menu-selection of the mouse-paradigm. A suitable gestural approach can make
the control task more effective and intuitive, and expand the system’s capabil-
ities. The new gestural system we present is described in detail in Section 2.
A general problem in using gestures for interactive control tasks lies in ‘map-
ping’ [1] the vector space of the gestural parameters to the vector space of the
control parameters. ’Explicit mapping’ [1] usually relies on the developer’s in-
tuition, which doesn’t always lead to the most effective solution for the control
task. In Section 3 a more intelligent and adaptive approach of this procedure
is under exploration; Principle Component Analysis (PCA) of the control data
space distribution is applied to obtain dimensionality reduction. Section 4 intro-
duces the application of our system to data audifications [3]. We demonstrate
enhanced gestural interaction with synthetic and seismic data. The paper closes
with a discussion of our experiences and an outlook of future work.

2 System Overview

Our Gestural interaction system provides a closed-loop human computer inter-
face. A webcam/EyesWeb subsystem described in [2] is used as sensor. EyesWeb

S. Gibet, N. Courty, and J.-F. Kamp (Eds.): GW 2005, LNAI 3881, pp. 335–338, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Scheme of the System Architecture. Modules communicating via OSC.

delivers the two hand coordinates and bounding boxes for recognized hand blobs
currently distinguished by using colored gloves. Gesture definition can be done
either in EyesWeb, or alternatively in Pd1 or Neo2. Open Sound Control (OSC)
is used to connect these modules.

The gestural controls are mapped to high-level controls (like spaciousness or
warmth) which are mapped to low-level controls (or output features) required by
the application (e.g. reverb parameters in DAFx control, effect filter frequencies
in audification) via a manually tuned control function and sent to the appli-
cation module via OSC. The modular system architecture allows to distribute
the system on different computers, which might be necessary if the modules are
computationally demanding.

3 Controlling Audio Effects - LPCA-Based Mapping

In the past an attempt was made by the second author to develop a functional
multi-modal real-time environment for “Alternative Control of Digital Audio Ef-
fects” [2], in specific a reverb3 as a prototype. The challenge was to define suited
hand gestures, to control the 10-dimensional output feature space of the reverb
in a more intuitive, engaging and creative way. Nevertheless, all mapping layers
had to be defined based totally on intuition and trials. Often few uncorrelated
dimensions suffice to approximate an output feature at sufficient accuracy. From
this observation, the question arises whether the vector space of useful controls
can be segmented into regions that form natural anchors for the control task.
This section suggests local principal component analysis (LPCA) as a means to
obtain such a segmentation on a data-driven way.

In the case of the reverb prototype, we gathered data from typical control sit-
uations and then used these to compute the principal axes. Fig. 2 shows a plot

1 PureData by Miller Puckette.
2 Neo/NST, graphical programming environment developed in Bielefeld, see [4].
3 ‘Freeverb’, created by Jezar Wakefield at Dreampoint Design and Engineering.
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Fig. 2. PCA plot of low-level control vectors for different performances. The right plot
shows eigenvalue spectra for all controls, and for two selected performances.

of the low-level parameters in the reverb application (projected on some princi-
pal axes). It can be seen that the different performances cluster. The effective
control dimensionality may be seen from the eigenvalue spectrum plotted right –
in isolated control presets, even 2-3 control dimensions would suffice to cover all
points accurately. We propose as gesture mapping, to connect gestures that are
easy to perform and independent, with variation along the principal axes of high-
est variance. Mathematically this is achieved by computing the output feature
vector y by y = Ax+b, where b is the prototype center, x the gestural controls,
A the matrix of eigenvectors (as columns) to the largest eigenvalues of the data
covariance matrix computed for those data used to determine the preset.

4 Gesture Controlled Audification

Our scientific application aims at interactive search of ‘interesting’ events in data
sonifications. The human ear is highly trained to perceive patterns even in very
noisy signals, however, this capability is limited to well known masking thresh-
olds. Spectral filtering is therefore a practical technique to isolate parts of the
audification and make specific elements more salient. But typically, parameter
settings for available variables like the sampling rate, the playback speed and
eventually spectral filtering parameters are set in advance. Thus, rendering of
sonification and playback are separated steps.

We argue that an interactive audification, where the user is embedded in a
closed control loop, may support pattern detection and accelerate the process of
finding appropriate control settings. It demonstrates that the expressiveness of
gestures is ideal for interacting with the multitude of parameters in interactive
audification, and thus increase the usability of audification significantly.

In this application EyesWeb is used for recording and processing the incoming
webcam images. The derived information, like hand positions (x, y) and palm
sizes (w, h) for both hands, are sent to Pd. This alone offers at least 6D real-time
control. We demonstrate the interactive audification system with two interaction
videos where the gestural interaction and the sonification can be observed during
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exploration of seismic measurements, and a synthetic data set where an initially
hidden acoustic structure is discovered. Further information and the videos are
available on the website [5].

5 Discussion

Gestural interactions provide rich means for real-time control, particularly in the
case of audio systems. Instead of using gestures to directly control a low-level
parameter, we have demonstrated two alternative ways of how to use intermedi-
ate structures: the first approach uses a definition of high-level parameters and
a fixed connection to low-level parameters by means of a functional relation,
while the second approach relies on a data-driven definition of control clusters
and their prevailing control variable axes.

While gesture recognition systems and control applications grow in perfection,
the intelligence between them attains higher and higher relevance. We think and
hope that the application of data mining techniques in the domain of both the
human gestural input and the algorithmic control parameter space can con-
tribute to the identification of better suited gestures and the optimization of the
mapping implementation, thus finally helping to the creation of more effective
human computer interfaces.
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Abstract. Rapid method for evaluation of pen-based text input techniques is 
necessary both for designers and consumers. We present a method that is based 
on an immediate performance comparison of the gesture making using the 
graphic templates of typefaces and the pen-based behavioral patterns. The re-
sults showed that besides the cognitive difficulty of symbolic gestures, meta-
phors and mnemonics, first and foremost the graphic feasibility determines 
handwriting performance of the gesture-based input techniques.  

1   Introduction 

While pen-based text entry is becoming a mainstream technology in mobile computing 
appliances, designers still try to embed QWERTY keyboard into PDAs and Smart-
phones. A smaller number of physical keys or software buttons requires learning and 
skills. A combination of fingers, when chorded keyboard is employed, is primarily 
based on the user’s cognitive capabilities to recall and activate a group of the buttons in 
a definite position and moment of time. Another tendency in pen-based text input is to 
display all characters and then optimize layout for shorthand or continuous writing [6, 
8, 9]. For an individual user a statistically optimal gesture may be inconvenient. Small 
circular motions require an accuracy and strain as inhibition processes dominate over 
excitation in such a case. Even linear motion can be sweet in one direction for some 
person and another one will prefer another direction. A strong motivation is necessary 
that a consumer really wishes to learn a new alphabet or the system of gestures when 
starting to use a new device [5]. How to predict that training and time will be not 
wasted due to individual unavailability of the gesture-based technique?  

Speed in pen-based text input depends on the individual handwriting skills and fin-
ger dexterity. Length of traces and gaps between characters (lifting) are also essential 
restricting factors of the speed. Cognitive components, like attention and memory, 
language comprehension and reasoning also affect learning of motor skills, can facili-
tate or inhibit the memorizing and using gestures for human-computer interaction. 
While many authors recognize these factors which have an impact on making ges-
tures, the special method for testing different graphic templates of typefaces and the 
system of behavioral patterns still stays beyond designing. 

2   New Gesture Template and Testing 

Western script has several handwriting styles for elementary school-aged children. 
The loops and other forms provide systematic steps for letter analysis and efficient 
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motor and memory cues for children. These strategies simplify the learning of func-
tional handwriting [3]. To employ prior handwriting experience of the user and to 
avoid some restrictions in gesture recognition, some time ago Graffiti text input sys-
tem was proposed as a commercial product of the Palm Computing Division of US-
Robotics. Graffiti has been examined in a number of previous studies [5]. These 
evaluations have considered many important factors, such as novice vs. expert per-
formance, the speed-accuracy trade-off, text creation vs. text copy tasks, focus of 
attention, quantitative vs. qualitative measures. However, is it possible to predict 
usability of different gesture-based techniques in a single case study without long-
term exploration?  

Let us suppose we have created a new form of character input based on a stylus 
gestures which are comprised of movements preferably drawn in one or two direc-
tions, for instance, from bottom left to top right position or/and backwards (Figure 1).  

 

Fig. 1. The layout of segments for Symbol Creator and possible entry gestures (the arrows) 

The black points in Figure 1 indicate the starting position for each gesture. Inter-
mediate segments are ignored; some characters have alternative gestures. Most of the 
characters composed from selected (by crossing) segments are naturally connected 
like a conventional cursive typeface (Latin) in a low-case position. We named this 
technique as Symbol Creator and it was empirically evaluated earlier as the alterna-
tive on-screen keyboard for gaze-based text input [7]. The Symbol Creator software 
for pen-based text input was written in eMbedded Visual Basic 3.0 and preliminarily 
tested on an iPAQ pocket PC.  

Individual capability to make different gestures has to correlate with the immediate 
performance of copying graphic patterns and could be used as the first-hand consumer 
guidance in acquiring one or another software product for text entry purposes.  

In the pilot tests we found out that of about 500 ms was enough to copy any image 
of different typefaces. Thus, 10 seconds for a trial might stimulate the subject to per-
form the test as fast as possible without any ‘additional thinking’ of how to do it. 
During this time at least 20 of 30 images would be copied in the template. To com-
pare different pen-based text input methods we have decided to simplify the proce-
dure to record copying of graphic templates without recognition of the gestures. The 
“bad” traces were removed automatically if the number of track points in a gesture 
array was less than one half of the number of points in the sample and the time of 
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making gesture was less than 50 ms. In such a way we avoided the long procedures of 
calibration to support different gesture recognition techniques. 

The testing program SpeedGraph was written in Microsoft Visual Basic 6.0. Data 
were gathered using Fujitsu Siemens LifeBook CE0122X with touchscreen and a 
stylus for interaction. Four graphic templates were tested. They were the following: 
gestures for Symbol Creator (SCreator), gestures for “minimal device-independent 
text input method” – an abbreviated title is MDITIM [4], Unistrokes [2] and Graffiti 
[1]. 20 unpaid volunteers took part in the test using the SpeedGraph software with the 
four graphic templates of the gestures intended for pen-based text input. Seven sub-
jects had prior experience with a pen-based computer and could operate with Unis-
trokes and Graffiti. Five subjects were female, 15 were male. The mean age of the 
subjects was 30 years. The complete testing duration was not more than 10 minutes 
per person: 10 attempts × 10 s × 4 templates, instructions, breaks and data preview. 

4   Results and Discussion 

Most of the subjects commented that MDITIM gestures were very difficult for copy-
ing. Drawing of Graffiti also showed a low speed - 16 images for 10 seconds or of 
about 380 ms per image at the standard deviation of about 400 ms. MDITIM patterns 
required of about 470 ms per image at the standard deviation of about 490 ms. While 
copying of the SCreator and Unistroke gestures, the speed difference was not signifi-
cant (F < 0.025). However, the standard deviation was lower during copying of im-
ages for SCreator gestures (Figure 2). On the other hand in Unistroke gestures, only 5 
patterns are similar to the conventional letters and some learning for other traces 
would have been required. In Symbol Creator only simpler movements in one or two 
directions have been used (Figure 1). At least 20% of the presented patterns were 
unconventional for the subjects (a, v, k, q, z). Therefore, we suppose that the copying 
of gesture images was not reproduced from the indicated starting position without  
any  thinking.  By pointing the starting position in the graphic sample, we provoke the  
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person to run a cognitive analysis before the gesture will be activated with a stylus. 
The direction of detour of the sample could also depend on individual preference.  

It was equally probable that the number of loops could essentially increase the 
length of traces. In a case of mental pre-processing, we could observe increasing of 
inter-stroke gaps. However, analysis of graphic templates showed that the stylus was 
held on the touchscreen and was lifted for approximately equal time, when copying 
the images in four tested templates. As correlation between the total times of the 
drawing and the length of the images of the graphic templates was of about 0.73, the 
probability of mental pre-processing was lower than individual capability to make 
small circular movements with MDITIM and Graffiti gestures. 

Thus, data analysis of four pen-based text input techniques showed that the type of 
motion and direction used for continuous writing are essential to produce any gestures 
intended for a higher performance interaction style, at least, with the use of a stylus 
and touchscreen. A person is expected to prefer more familiar and simpler gestures 
that require smaller cognitive efforts and fingers dexterity. 

The method for rapid evaluation of new gestures for pen-based text input is based 
on a comparison of the personal immediate performance in copying the graphic pat-
terns. The method does not require memorizing of the new gestures nor any specific 
layouts or rules before testing. Testing takes no more than two minutes per graphic 
template that is composed of 30 samples of the behavioral patterns. 

Acknowledgements. This work was financially supported by the Academy of Finland 
(grant 200761 and grant 107278). 
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Courty, Nicolas 168
Couturier, Jean-Michel 296
Crétual, Armel 236

Dalle, Patrice 25
Deselaers, Thomas 124
Dias, José Miguel Salles 129
Dreuw, Philippe 124
Durocher, Carole 200

Evreinov, Grigori 339

Fabre, Arnaud 324
Filatriau, Jehan-Julien 296
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